Skip to main content

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Summary

An accretion flow is necessarily transonic around a black hole. However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic points vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.I. Shakura, R.A. Sunyaev: A&A 24, 337 (1973)

    ADS  Google Scholar 

  2. J.E. Pringle: ARA&A 19, 137 (1981)

    Article  ADS  Google Scholar 

  3. S.A. Balbus, J.F. Hawley: ApJ 376, 214 (1991)

    Article  ADS  Google Scholar 

  4. E. Velikhov: J. Exp. Theor. Phys. 36, 1398 (1959)

    Google Scholar 

  5. S. Chandrasekhar: Proc. Natl. Acad. Sci. 46, 253 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. G. Tevzadze, G. D. Chagelishvili, J.-P. Zahn, R. Chanishvili, J. Lominadze: A&A 407, 779 (2003)

    Article  ADS  Google Scholar 

  7. P. Yecko: A&A 425, 385 (2004)

    Article  MATH  ADS  Google Scholar 

  8. O. Umurhan, O. Regev: A&A 427, 855 (2004)

    Article  MATH  ADS  Google Scholar 

  9. N. Afshordi, B. Mukhopadhyay, R. Narayan: ApJ 629, 373 (2005)

    Article  ADS  Google Scholar 

  10. B. Mukhopadhyay, N. Afshordi, R. Narayan: ApJ 629, 383 (2005)

    Article  ADS  Google Scholar 

  11. B. Mukhopadhyay: ApJ 653, 503 (2006)

    Article  ADS  Google Scholar 

  12. A. G. Tevzadze, G. D. Chagelishvili, J.-P. Zahn: arXiv0710.3648

    Google Scholar 

  13. M. Abramowicz, W. Zurek: ApJ 246, 314 (1981)

    Article  ADS  Google Scholar 

  14. S. K. Chakrabarti: ApJ 347, 365 (1989)

    Article  ADS  Google Scholar 

  15. R. Narayan, I. Yi: ApJ 428, L13 (1994)

    Article  ADS  Google Scholar 

  16. S. K. Chakrabarti: Phys. Rep. 266, 229 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. K. Chakrabarti: A&A 351, 185 (1999)

    ADS  Google Scholar 

  18. B. Mukhopadhyay: ApJ 586, 1268 (2003)

    Article  ADS  Google Scholar 

  19. B. Mukhopadhyay, S. Ghosh: MNRAS 342, 274 (2003)

    Article  ADS  Google Scholar 

  20. S. K. Chakrabarti: Theory of transonic astrophysical flows, (World Scientific, Singapore 1990)

    Google Scholar 

  21. B. Paczyński, P. J. Wiita: A&A 88, 23 (1980)

    ADS  Google Scholar 

  22. B. Mukhopadhyay: ApJ 581, 427 (2002)

    Article  ADS  Google Scholar 

  23. H. Bondi: MNRAS 112, 195 (1952)

    ADS  MathSciNet  Google Scholar 

  24. R. Matsumoto, S. Kato, J. Fukue, A. T. Okazaki: PASJ 36, 71 (1984)

    ADS  Google Scholar 

  25. J. M. T. Thompson, H. B. Stewart: Nonlinear Dynamics and Chaos, (John Willey and Sons Ltd. 1985)

    Google Scholar 

  26. S. K. Chakrabarti, B. Mukhopadhyay: A&A 344, 105 (1999)

    ADS  Google Scholar 

  27. B. Mukhopadhyay, S. K. Chakrabarti: A&A 353, 1029 (2000)

    ADS  Google Scholar 

  28. B. Mukhopadhyay, S. K. Chakrabarti: ApJ 555, 816 (2001)

    Article  ADS  Google Scholar 

  29. S. K. Chakrabarti: ApJ 464, 664 (1996)

    Article  ADS  Google Scholar 

  30. J. Cox, R. Giuli: Principles of Stellar Structure, (Gordon & Breach, New York 1968)

    Google Scholar 

  31. S. V. Vadawale, A. R. Rao, A. Nandi, S. K. Chakrabarti: A&A 370, 17 (2001)

    Article  ADS  Google Scholar 

  32. S. V. Vadawale, A. R. Rao, S. Naik, J. S. Yadav, C. H. Ishwara-Chandra, A. Pramesh Rao, G. G. Pooley: ApJ 597, 1023 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. S. Hasan R. T. Gangadhara V. Krishan

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Mukhopadhyay, B. (2009). Transonic Properties of Accretion Disk Around Compact Objects. In: Hasan, S.S., Gangadhara, R.T., Krishan, V. (eds) Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8868-1_17

Download citation

Publish with us

Policies and ethics