Skip to main content

Modeling of Combustion Phenomena

  • Chapter
Progress in Scale Modeling

Abstract

Scale modeling of combustion phenomena is considered in different contexts, ranging from power production by fossil fuels to damage by hostile fires. Since descriptions of combustion require a relatively large number of nondimensional groups, combustion modeling is comparatively challenging. Rather than viewing this difficulty as a source of despair, the complexity can be considered to provide a wider range of options for extracting worthwhile information from careful observations performed in experiments designed on the basis of alternative approaches to scale modeling. Combustion offers more possibilities for utilization of inaccurate “partial modeling” for enhancing understanding. Specific examples addressed include cold-flow modeling, Froude-number scaling, pressure modeling and microgravity droplet combustion. Through these examples it is concluded that a rich variety of advances can be made by modeling of combustion phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.I. Emori and D.J. Schuring, Scale Models in Engineering: The Theory and Its Application, Pergamon, 1977.

    Google Scholar 

  2. F.A. Williams, Combustion Theory, 2nd edn, Addison-Wesley, 1985.

    Google Scholar 

  3. A. Linan and F.A. Williams, Fundamental Aspects of Combustion, Oxford, 1993.

    Google Scholar 

  4. F.A. Williams, Fire Research Abstracts and Reviews, 11:1 (1969).

    Google Scholar 

  5. D.B. Spalding, Ninth International Symposium on Combustion, Academic, p. 833 (1963).

    Google Scholar 

  6. A.E. Clarke, A.J. Gerrard and L.A. Holliday, Ninth International Symposium on Combustion, Academic, p. 878 (1963).

    Google Scholar 

  7. V.I. Blinov and G.N. Khudiakov, Doklady AcademieNauk, SSSR, 113:1094 (1957).

    Google Scholar 

  8. R.I. Emori and K. Saito, Combustion Science and Technology, 31:217 (1983).

    Article  Google Scholar 

  9. S. Soma and K. Saito, Combustion and Flame, 86:269 (1991).

    Article  Google Scholar 

  10. T. Yumoto, Combustion and Flame, 17:108 (1971).

    Article  Google Scholar 

  11. T. Hirano and K. Saito, Progress in Energy and Combustion Science, 20:461 (1994).

    Google Scholar 

  12. F.A. Williams, Progress in Energy and Combustion Science, 8:317 (1982).

    Article  Google Scholar 

  13. N.A. Rokke, J.E. Hustad, O.K. Senju and F.A. Williams, Twenty-Fourth International Symposium on Combustion, The Combustion Institute, p. 385 (1992).

    Google Scholar 

  14. H.R. Baum and R.G. Rehm, Combustion Science and Technology, 40:55 (1984).

    Article  Google Scholar 

  15. K.D. Steckler, H.R. Baum and J.G. Quintiere, Twenty-First International Symposium on Combustion, The Combustion Institute, p. 143 (1987).

    Google Scholar 

  16. J. de Ris, A.M. Kanury and M.C. Yuen, Fourteenth International Symposium on Combustion, The Combustion Institute, p. 1033 (1973).

    Google Scholar 

  17. R.L. Alpert, Sixteenth International Symposium on Combustion, The Combustion Institute, p. 1489 (1977).

    Google Scholar 

  18. R.A. Altenkirch, R. Eichhorn, N.N. Hsu, A.B. Brancic and N.E. Cevallos, Sixteenth International Symposium on Combustion, The Combustion Insitute, p. 1165 (1977).

    Google Scholar 

  19. M. Kono, K. Ito, T. Niioka, T. Kadota and J. Sato, Twenty-Sixth International Symposium on Combustion, The Combustion Institute, p. 1189–1199 (1996).

    Google Scholar 

  20. D.L. Dietrich, J.B. Haggard, Jr., F.L. Dryer, V. Nayagam, B.D. Shaw and F.A. Williams, Twenty-Sixth International Symposium on Combustion, The Combustion Institute, p. 1201–1207 (1996).

    Google Scholar 

  21. S. Kumagai and H. Isoda, Sixth International Symposium on Combustion, Reinhold, p. 726 (1957).

    Google Scholar 

  22. S. Jolly and K. Saito, Fire Safety Journal, 18:139 (1992).

    Article  Google Scholar 

  23. B.J. McCaffrey, J.G. Quintiere and M.F. Harkleroad, Fire Technology, 17:98 (1981).

    Article  Google Scholar 

  24. S. Jolly, M.P. Menguc, K. Saito and R.A. Alternkirch, First International Symposium on Scale Modeling, Japan Society of Mechanical Engineers, p. 373 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Williams, F.A. (2008). Modeling of Combustion Phenomena. In: Saito, K. (eds) Progress in Scale Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8682-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8682-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8681-6

  • Online ISBN: 978-1-4020-8682-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics