Skip to main content

Puzzles of Cell and Animal Physiology in View of the Chain-Ordering Transition in Lipid Membrane

  • Chapter
Phase Transitions in Cell Biology
  • 845 Accesses

Abstract

The chapter discusses the concept of a membrane phase-transition- dependent (MPTD) elementary machine, implementing physiological functions in the cell. Synaptic exocytosis is among the most important functions, in which the highest perfection is achieved owing to the MPTD machine. The concept presents a unitary approach to different aspects of physiology and allows to answer a number of general unsolved questions, which have been puzzling investigators for decades. The following questions, among many, have been offered a reasonable answer: What is the biological expedience of homeothermy? Why is anaesthesia reversed by hydrostatic pressure, while the pressure itself causes immobilisation? What is the recovery function of sleep, and why is this function incompatible with the active state of warm-blooded animals?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agafonov, A.V., Belosludsev, K.N., Gritsenko, E.N., Kovalev, A.E., Mironova, G.D., Shlyapnikova, E.A., and Kharakoz, D.P. 2003. The Ca2+-induced phase seggregation of palmitic acid in lipid membrane and the formation of a lipid pore. In: Horizons of Biophysics: From Theory to Practice. Institute of Theiretical and Experimental Biophysocs, Pushchino, Russia, pp. 137–141.

    Google Scholar 

  • Alexandrov, V.Ya. 1977. Cells, Macromolecules and Temperature. Springer, Berlin, Heidelberg, New York. 330 p.

    Google Scholar 

  • Antonov, V.F., Petrov, V.V., Molnar, A.A., Predvoditelev, D.A., and Ivanov, A.S. 1980. The appearance of single ion channels in unmodified lipid bilayer membrane at the phase transition temperature. Nature 283:585–586.

    Article  PubMed  CAS  Google Scholar 

  • Antonov, V.F., Anosov, A.A., Nemchenko, O.Yu., and Smirnova, E.Yu. 2007. Pure lipid pores in Unmodified planar bilayer lipid membrane at the phase transition from the liquid crystalline state to the gel state. In: Advances in Planar Lipid Bilayers and Liposomes, vol 5, pp. 151–172 (Chap 6).

    Article  CAS  Google Scholar 

  • Augustine, G.J., Charlton, M.P., and Smith, S.J. 1987. Calcium action in synaptic transmitter release. Annu. Rev. Neurosci. 10:633–693.

    Article  PubMed  CAS  Google Scholar 

  • Biltonen, R.L. 1990. A statistical-thermodynamic view of cooperative structural changes in phospholipid bilayer membranes: their potential role in biological function. J. Chem. Thermodynamics 22:1–19.

    Article  CAS  Google Scholar 

  • Bloom, M., Evans, E., and Mouritsen, O.G. 1991. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q. Rev. Biophys. 24:293–397.

    Article  PubMed  CAS  Google Scholar 

  • Blumenfeld, L.A. 1981. Problems in Biological Physics. Springer, Heidelberg.

    Google Scholar 

  • Cain, D.P., Hargreaves, E.L., and Boon, F. 1994. Brain temperature- and behavior-related changes in the dentate gyrus field potential during sleep, cold water immersion, radiant heating, and urethane anesthesia. Brain Res. 658:135–144.

    Article  PubMed  CAS  Google Scholar 

  • Cevc, G., and Marsh, D. 1987. Phospholipid Bilayers. Physical Principles and Models. Wiley, New York.

    Google Scholar 

  • Cevc, G., and Richardsen, H. 1999. Lipid vesicles and membrane fusion. Adv. Drug Deliv. Rev. 38:207–232.

    Article  PubMed  CAS  Google Scholar 

  • Crawshaw, L.I., Wollmuth, L.P., and O’Connor, C.S. 1989. Intracranial ethanol and ambient anoxia elicit selection of coller water by gold fish. Am. J. Physiol. 256:R133–R137.

    PubMed  CAS  Google Scholar 

  • Dluzewski, A.R., Halsey, M.J., and Simmonds, A.C. 1983. Membrane interactions with general and local anaesthetics: a review of molecular hypotheses of anaesthesia. Mol. Aspects. Med. 6:461–573.

    Article  PubMed  CAS  Google Scholar 

  • Dreving, V.P., and Kalashnikov, Ya.A. 1964. [Phase Rule]. Moscow University Publisher, Moscow. (In Russian)

    Google Scholar 

  • Fuller, A., Moss, D.G., Skinner, J.D., Jessen, P.T., Mitchell, G., and Mitchell, D. (1999) Brain, abdominal and arterial blood temperatures of free-ranging eland in their natural habitat. Pflugers Arch. 438:671–680.

    Article  PubMed  CAS  Google Scholar 

  • Gillis, D.M. 1996. Why sleep? Bioscience 46:391–393.

    Article  Google Scholar 

  • Goda, Y., and Südhof, T.C. 1997. Calcium regulation of neurotransmitter release: reliably unreliable? Curr. Opin. Cell Biol. 9:513–518.

    Article  PubMed  CAS  Google Scholar 

  • Haldane, J.B.C. 1945. A physisist looks at genetics. Nature 155:375–376.

    Article  Google Scholar 

  • Hazel, J.R. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57:19–42.

    PubMed  CAS  Google Scholar 

  • Hazel, J.R., McKinley, S.J., and Gerrits, M.F. 1998. Thermal acclimation of phase behavior in plasma membrane lipids of rainbow trout hepatocytes. Am. J. Physiol. 275:R861–R869.

    PubMed  CAS  Google Scholar 

  • Heimburg T. 1998. Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim. Biophys. Acta 1415:147–162.

    Article  PubMed  CAS  Google Scholar 

  • Heimburg, T., and Jackson, A.D. 2005. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA 102:9790–9795

    Google Scholar 

  • Heimburg, T., and Jackson, A.D. 2007. The thermodynamics of general anesthesia. Biophys J. 106:099754.

    Google Scholar 

  • Hochachka, P.W., and Somero, G.N. 1984. Biochemical Adaptation. Princeton University Press, Princeton, (Chap 11).

    Google Scholar 

  • Ivanov, K.P. 1972. Bioenergetics and Temperature Homeostasis. Nauka, Moscow. (In Russian)

    Google Scholar 

  • Ivanov, K.P., and Slepchuk, N.A. 1985. Sensitivity and precision of the operation of the human physiological thermostat. Dokl. Akad. Nauk SSSR 281:753–757. (In Russian)

    PubMed  CAS  Google Scholar 

  • Iwahashi, M., Minami, H., Suzuki, T., Koyanagi, M., Yao, H., Ema, K., and Ashizawa, K. 2001. Thermotropic properties of steroids: 5-cholesten-3β-ol, 5α-cholestan-3β-ol, and 5β-cholestan-3α-ol. J. Oleo. Sci. 50:693–695.

    CAS  Google Scholar 

  • Kamaya, H., Ueda, I., Moore, P.S., and Eyring, H. 1979. Antagonism between high pressure and anesthetics in the thermal phase-transition of dipalmitoyl phosphatidylcholine bilayer. Biochim. Biophys. Acta 550:131–137.

    Article  PubMed  CAS  Google Scholar 

  • Kaminoh, Y., Nishimura, S., Kamaya, H., and Ueda, I. 1992. Alcohol interaction with high entropy states of macromolecules: critical temperature hypothesis for anesthesia cutoff. Biochim. Biophys. Acta 1106:335–343.

    Article  PubMed  CAS  Google Scholar 

  • Kharakoz, D.P. 2000. Phase transition in lipids and the problem of homeothermy. Biophysics, 45(3):554–557. (In Russian)

    Google Scholar 

  • Kharakoz, D.P. 2001. Phase-transition-driven synaptic exocytosis: A hypothesis and its physiological and evolutionary implications. Biosci. Rep. 21(6):801–830.

    Article  PubMed  CAS  Google Scholar 

  • Kharakoz, D.P. 2003. Chain-ordering phase transition in bilayer: Kinetic mechanism and its physicochemical and physiological implications. In: Planar Lipid Bilayers and Their Applications. (H.T. Tien and A. Ottova, eds.) Elsevier, Amsterdam-New York, pp. 239–268 (Chap 7).

    Chapter  Google Scholar 

  • Kharakoz, D.P., Panchelyuga, M.S., Tiktopulo, E.I., and Shlyapnikova, E.A. 2006. Gel-state nucleation in multilamellar vesicles of dimyristoylphosphatidylcholine and its relation to the critical temperature: A lattice model and microcalorimetry. Web-archive of Cornell: Condensed Matter/0601523. http://arxiv.org/abs/cond-mat/0601523.

  • Kinney, M., Jones, W.R., Royal, R., Brauer, R.W., and Sorrel, F.Y. 1981. A gradient tube system for the study of the effect of high hydrostatic pressures on temperature preference behavior in small aquatic animals. Comp. Biochem. Physiol. 68:501–505.

    Article  Google Scholar 

  • Kinnunen, P.K.J., and Virtanen, J.A. 1986. A qualitative molecular model of the nerve excitability. In: Modern Bioelectrochemistry (F. Gutmann and H. Keyzer eds.), Plenum, New York, pp. 457–479 (Chap 17).

    Google Scholar 

  • Koltsoff, N.K. 1927. Physicochemical fundamentals of morphology. Reprinted in 1968 In: The Classics of Soviet Genetics. Leningrad. pp. 85–92. (In Russian)

    Google Scholar 

  • Laggner, P., Lohner, K., Degovics, G., Muller, K., and Schuster, A. 1987. Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. Chem. Phys. Lipids. 44:31–60.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A.G. 1977. Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim. Biophys. Acta 472:285–344.

    PubMed  CAS  Google Scholar 

  • Lohner, K., Schuster, A., Degovics, G., Muller, K., and Laggner, P. 1987. Thermal phase behaviour and structure of hydrated mixtures between dipalmitoyl- and dihexadecylphosphatidylcholine. Chem. Phys. Lipids. 44:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia, F., Villalain, J., Gomez-Fernandez, J.C., and Quinn, P. 1994. Biophys. J. 66: 1991–2004.

    Google Scholar 

  • Macdonald, A.G. 1984. The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 304:47–68.

    Article  PubMed  CAS  Google Scholar 

  • Maddis, R. 1983. The evolution of sleep. In: Sleep Mechanisms and Function. (A. Mayes, ed.) Van Nostrand Reinhold, Cambridge, UK, pp. 57–106.

    Google Scholar 

  • Mednikov, B.M. 2001. N.V. Timofeeff-Ressoffsky and the axiomatics of theoretical biology. Proceedings of the Conference of Joint Institute for Nuclear Research. Dubna, Russia, pp. 283–294. (In Russian).

    Google Scholar 

  • Melchior, D.L., and Steim, J.M. 1976. Thermotropic transitions in biomembranes. Annu. Rev. Biophys. Bioeng. 5:205–238.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, H. 1899. Zur Theorie der Alkoholnarkose. Erste Mittheilung. Welche Eigenschaft der Anösthetica bedingt ihre narkotische Wirkung? Arch. Exp. Pathol. Pharmakol. 425:109–118.

    Google Scholar 

  • Miller, K.W., Paton, W.D., Smith, R.A., and Smith, E.B. 1973. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol. Pharmacol. 9:131–143.

    PubMed  CAS  Google Scholar 

  • Moshkov, D.A. 1985. Adaptation and Ultrastructure of Neuron. Nauka, Moscow. (In Russian)

    Google Scholar 

  • Mouritsen, O.G. 2005. Life—As a Matter of Fat: The Emerging Science of Lipidomics. Springer-Verlag, Berlin, 276p.

    Google Scholar 

  • Nasonov, D.N., and Alexandrov, V.Ja. 1949. Reaction of the Living Substance to External Actions. USSR Acad. Sci. Publisher, Moscow, Leningrad. 252p. (In Russian)

    Google Scholar 

  • O’Connor, C.S., Crawshaw, L.I., Bedichek, R.C., and Crabbe, J.C. 1988. The effect of ethanol on temperature selection in the goldfish, Carassius auratus. Pharmacol. Biochem. Behav. 29:243–248.

    Article  PubMed  CAS  Google Scholar 

  • Overton, C.E. 1901. Studien über die Narkose. Jena, Germany.

    Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973. Phase transitions in phospholipid vesicles. Fluorescence polarization permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta 31:330–348.

    Google Scholar 

  • Pastukhov, Yu.F., Ekimova, I.V., Nozdrachev, A.D., Guselnikova, E.A., Sedunova, E.V., and Zimin, A.L. 2001. The states of sleep significantly contribute to both cooling and heating of pigeon’s brain. Dokl. Akad. Nauk 376:836–840. (In Russian)

    CAS  Google Scholar 

  • Parmeggiani, P.L. 1995. Brain cooling across wake-sleep behavioral states in homeothermic species: an analysis of the underlying physiological mechanisms. Rev. Neurosci. 6:353–363.

    PubMed  CAS  Google Scholar 

  • Pollack, G.H. 2001. Cells, Gells and the Engines of Life. Ebner & Sons, Seattle WA, USA. 320p.

    Google Scholar 

  • Prosser, C.L. 1973. Temperature. In: Comparative Animal Physiology. (C.L. Prosser ed.) W.B. Saunders Company, Philadelphia-London-Toronto, (Chap 9).

    Google Scholar 

  • Shnoll, S.E. 1979. Physicochemical Factors of Biological Evolution. Nauka, Moscow. English edition: Shnol, S.E. Physicochemical Factors of Biological Evolution. Hardwood Academic Publishers GmbH, The Netherlands, 1981 (Chap 11).

    Google Scholar 

  • Shnoll, S.E. 2001. Heroes, Villains, and Conformists of Russian Science. Kron-Press, Moscow. 875p. (In Russian).

    Google Scholar 

  • Smith, R.A., Dodson, B.A., and Miller, K.W. 1984. The interactions between pressure and anaesthetics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 304:69–84.

    Article  PubMed  CAS  Google Scholar 

  • Troshin, A.S. 1956. Problems of Cell Permeability. English translation: Pergamon Press, Oxford, Translated by W.F. Widdas.

    Google Scholar 

  • Troshin, A. 1966. Problems of Cell Permeability. Pergamon Press, Oxford.

    Google Scholar 

  • Trudell, J.R., Payan, D.G., Chin, J.H., and Cohen, E.N. 1975. The antagonistic effect of an inhalation anesthetic and high pressure on the phase diagram of mixed dipalmitoyl- dimyristoylphosphatidylcholine bilayers. Proc. Natl. Acad. Sci. U. S. A. 72:210–213.

    Google Scholar 

  • Ubbelohde, A.B. 1965. Melting and Crystal Structure. Clarendon Press, Oxford, (Chaps 11 and 14).

    Google Scholar 

  • Ueda, I. 2001. Molecular mechanisms of anesthesia. Keio J. Med. 50:20–25

    PubMed  CAS  Google Scholar 

  • Uchida, K., Yao, H., and Ema, K. 1997. Effect of chain length on the heat-capacity anomaly at the gel to liquid-crystalline phase transition in unilamellar vesicles of phosphatidylcholines. Phys. Rev. E, 56:661–666.

    Article  CAS  Google Scholar 

  • Webb, W.B. 1983. Theories in modern sleep research. In: Sleep Mechanisms and Function. (A. Mayes, ed.) Van Nostrand Reinhold, Cambridge, UK, pp. 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kharakoz, D. (2008). Puzzles of Cell and Animal Physiology in View of the Chain-Ordering Transition in Lipid Membrane. In: Pollack, G.H., Chin, WC. (eds) Phase Transitions in Cell Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8651-9_6

Download citation

Publish with us

Policies and ethics