Skip to main content

Submarine Hydrothermal Mineral Systems

  • Chapter

Abstract

Present-day, active submarine hydrothermal effluents, at spreading centres (mid-ocean ridges) and in oceanic volcanic arcs and back-arcs, are of considerable interest because they provide a window into ore systems of the ancient geological record that are interpreted to have originated from submarine fluids venting. A wide range of volcanogenic, volcanic-associated or volcanic-hosted massive sulphide deposits, commonly known as VMS orVHMS, as for example the giant ore deposits of the Iberian belt, Cyprus, the Japanese Kuroko deposits and the Archaean Canadian Noranda- or Abitibi-type deposits and similar style ore systems in the very ancient (~3.25 Ga) geological record of the Pilbara Craton in Western Australia, are all explained by models of submarine venting at spreading centres, arc or back-arc rift settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamides NG (1984) Cyprus volcanogenic sulfide depositsin relation to their environment of formation. Unpubl PhD thesis, University of Leicester

    Google Scholar 

  • Adamson RG, Teichmann RFH (1986) The Matchless cupreous pyrite deposit, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa, vol 2. Geol Soc S Afr, pp 1755–1760

    Google Scholar 

  • Alabaster T, Pearce JA (1985) The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman ophiolite. Econ Geol 80: 1–16

    Google Scholar 

  • Alt JC, Lonsdale P, Haymon R, Muehlenbachs K (1987) Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise. Geol Soc Am Bull 98: 157–168

    Google Scholar 

  • Ashley PM, Dudley RJ, Lesh RH, Marr JM, Ryall AW (1988) The Scuddles Cu-Zn prospect, an Archean volcanogenic massive sulfide deposit, Golden Grove district, Western Australia. Econ Geol 83: 918–951

    Google Scholar 

  • Austen S (2007) Isotopic and thermal constraints on the origin and formation of the Abra polymetallic deposit, Jillawara Sub-basin, Western Australia. Unpub MSc thesis, School Ocean Sci, Univ Southampton

    Google Scholar 

  • Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J, Kwok K, Trowell N (2002) Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology, autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambr Res 115: 63–96

    Google Scholar 

  • Baker ET, Massoth GJ, Feely RA (1987) Cataclysmic venting on the Juan de Fuca Ridge. Nature 329: 149–151

    Google Scholar 

  • Baker ET (1998) Patterns of event and chronic hydrothermal venting following a magmatic intrusion: new perspectives from the 1996 Gorda Ridge eruption. Deep Sea Res II 45: 2599–2618

    Google Scholar 

  • Banks DA (1985) A fossil hydrothermal worm assemblage from the Tynagh lead-zinc deposits in Ireland. Nature 313:128–131

    Google Scholar 

  • Barley ME (1992) A review of Archean volcanic-hosted massive sulfide and sulfate mineralization in Western Australia. Econ Geol 87: 855–872

    Google Scholar 

  • Barrett TJ, MacLean WH (1999) Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Rev Econ Geol 8: 101–131

    Google Scholar 

  • Barrie CT, Hannington MD (eds) (1999) Volcanic-associated massive sulphide deposits: processes and examples in modern and ancient settings. Rev Econ Geol 8

    Google Scholar 

  • Beaudoin Y, Scott SD, Gorton MP, Zajacz Z, Halter W (2007) Pb and other ore metals in modern seafloor tectonic environments: evidence from melt inclusions. Marine Geol doi: 10.1016/j.margeol.2007.04.004

    Google Scholar 

  • Beccaluva L (ed) (1989) Ophiolites and lithosphere of marginal seas. Chem Geol 77

    Google Scholar 

  • Binns RA, Scott SD (1993) Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the Eastern Manus back-arc basin, Papua New Guinea. Econ Geol 88: 2226–2236

    Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1989) Salinity variations in submarine hydrothermal systems by layered double-diffusive convection J Geol 97: 613–623

    Google Scholar 

  • Boddington TDM (1990) Abra lead–silver–copper–gold deposit. In: Hughes, FE (ed), Mineral deposits of Australia and Papua New Guinea. Aus Inst Min Metal, Monograph 14: 659–664

    Google Scholar 

  • Bonatti E (1975) Metallogenesis at oceanic spreading centres. Earth Planet Sci Lett 3: 401–431

    Google Scholar 

  • Bonatti E (1978) The origin of metal deposits in the oceanic lithosphere. Sci Am 238: 54–61

    Google Scholar 

  • Bonatti E (1983) Hydrothermal metal deposits from the ocean rifts: a classification. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 491–502

    Google Scholar 

  • Bott MHP (1982) The interior of the Earth: its structure, constitution and evolution. Arnold, London

    Google Scholar 

  • Boudier F, Nicolas A (eds) (1988) The ophiolites of Oman. Tectonophysics Spec Issue 151

    Google Scholar 

  • Boyce AJ, Coleman ML, Russell MJ (1983) Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature 306: 545–550

    Google Scholar 

  • Brauhart CW, Groves DI, Morant P (1998) Regional alteration systems associated with volcanogenic massive sulfide mineralization at Panorama, Pilbara, Western Australia. Econ Geol 93: 292–302

    Google Scholar 

  • Breitkopf JH, Maiden KJ (1988) Tectonic setting of the Matchless Belt pyritic copper deposits, Namibia. Econ Geol 83: 710–723

    Google Scholar 

  • Burke KC, Kidd WSF, Turcotte L, Dewey JF, Mouginis-Mark PJ, Parmentier, EM, Šengör AMC, Tapponier PE (1981) Tectonics of basaltic volcanism. In: Basaltic volcanisn on the terrestrial planets. Lunar Planet Inst (ed), Houston. Pergamon, New York, pp 803–898

    Google Scholar 

  • Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley M (1990) Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emission study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res 95: 12895–12921

    Google Scholar 

  • Canadian American Seamount Expedition (1985) Hydrothermal vents on an axis seamount of the Juan de Fuca ridge. Nature 313: 212–214

    Google Scholar 

  • Cannat M, Sautre D, Ruellan E, Okino K, Escartin J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34: 605–608

    Google Scholar 

  • Carvalho D, Barriga FJAS, Munhá J (1999) Bimodal siliciclastic systems – the case of the Iberian Pyrite Belt. Rev Econ Geol 8: 375–408

    Google Scholar 

  • Cathles LM (1983) An analysis of the hydrothermal system responsible for massive sulfide deposition in the HoKuroko basin of Japan. Econ Geol Monogr 5: 439–487

    Google Scholar 

  • Coleman RG (1977) Ophiolites. Springer-Verlag, New York

    Google Scholar 

  • Coleman RG (1984) Ophiolites and the tectonic evolution of the Arabian peninsula. Geol Soc Special Publ 13: 359–366

    Google Scholar 

  • Collins PLF, McDonald IR (1994) A Proterozoic sediment-hosted polymetallic epithermal deposit at Abra in the Jillawarra sub-basin of the central Bangemall Basin, Western Australia. Geol Soc Aus Abs 37: 68–69

    Google Scholar 

  • Constantinou G (1980) Metallogenesis associated with the Troodos ophiolite. In: Panayioutou A (ed) Ophiolites. Int Symp Cyprus 1979, Proc Cyprus Minist Agric Nat Resourc, pp 663–674

    Google Scholar 

  • Constantinou G, Govett GJS (1972) Genesis of sulphide deposits, ochre and umber of Cyprus. Trans Inst Min Metall 81: B34–B36

    Google Scholar 

  • Corbett KD (2001) New mapping and interpretation of the Mount Lyell mining district, Tasmania: A large hybrid Cu–Au system with an exhalative Pb–Zn top. Econ Geol 96: 1089–1122

    Google Scholar 

  • Darwin C (1860) The origin of the species – by means of natural selection. 2nd edn, John Murray, London

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature 440: 659–662

    Google Scholar 

  • Davies HL, Jaques AL (1984) Emplacement of ophiolite in Papua New Guinea. Geol Soc Spec Publ 13: 341–349

    Google Scholar 

  • de Ronde CEJ (2006) Mineralisation associated with submarine volcanoes of the southern Kermadec arc, New Zealand. Aus Inst Min Metall Monogr 25: 333–338

    Google Scholar 

  • de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Feely RA, Greene RR (2001) Intraoceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett 193: 359–369

    Google Scholar 

  • de Ronde CEJ, Massoth GJ, Baker ET, Lupton JE (2003a) Submarine hydrothermal venting related to volcanic arcs. Soc Econ Geol Spec Publ 10: 91–110

    Google Scholar 

  • de Ronde CEJ, Faure K, Bray CJ, Chappell DA, Wright IC (2003b) Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner Depos 38: 217–233

    Google Scholar 

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Beyes Ag, Baker ET, Massoth GJ, Lupton GJ, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: Brothers Volcano, southern Kermadec arc, New Zealand. Econ Geol 100: 1097–1133

    Google Scholar 

  • Delaney JR, Robigou V, McDuff RE, Tivey MK (1992) Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J Geophys Res 97: 19663–19682

    Google Scholar 

  • Dilek Y (2003) Ophiolite concept and its evolution. Geol Soc Am Spec Pap 373: 1–16

    Google Scholar 

  • Dilek Y, Robinson PT (eds) 2003, Ophiolites in Earth history. Geol Soc, Lond, Spec Publ 218

    Google Scholar 

  • Dilek Y, Newcombe S (eds) (2003) Ophiolite concept and the evolution of geological thought. Geol Soc Am Spec Pap 373

    Google Scholar 

  • Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The Rainbow vent fluids (36 14' N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184: 37–48

    Google Scholar 

  • Dziak RP, Fox CG, Schreiner AE (1995) The June–July 1993 seismo-acoustic event at Co-Axial segment, Juan de Fuca Ridge: evidence for a lateral dike injection. Geophys Res Lett 22: 135–138

    Google Scholar 

  • Edmond JM, Von Damm K (1983) Hot springs on the ocean floor. Sci Am 248: 70–85

    Google Scholar 

  • Eldridge CS, Barton PB, Ohmoto H (1983) Mineral textures and their bearing on formation of the kuroko orebodies. Econ Geol Monogr 5: 241–281

    Google Scholar 

  • Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289: 756–758

    Google Scholar 

  • Fleet AJ, Robertson AHF (1980) Ocean-ridge metalliferous and pelagic sediments of the Semail Nappe, Oman. J Geol Soc London 137: 403–422

    Google Scholar 

  • Fouquet Y, Auclair G, Cambon P, Etoubleau J (1988) Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise Marine. Geology 84: 145–178

    Google Scholar 

  • Fouquet Y, von Stackelberg V, Charlou JL, Donval JP, Erzinger J, Foucher JP, Herzig P, Mühe R, Sokai S, Wiedicke M, Whitechurch H (1991a) Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349: 778–781

    Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou JL, Donval JP, Foucher JP, Erzinger J, Herzig P, Mühe R, Wiedicke M, Soakai S, Whitechurch H (1991b) Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology 19:303–306

    Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou JL, Erzinger J, Herzig PM, Mühe R, Wiedicke M (1993) Metallogenesis in back-arc environments: the Lau Basin example. Econ Geol 88: 2154–2181

    Google Scholar 

  • Fox JS (1984) Besshi-type volcanogenic sulphide deposits – a review. Can Inst Min Metall Bull 77: 57–68

    Google Scholar 

  • Francheteau J, Needham HD, Choukroune P, Juteau T, Seguret M, Ballard RD, Fox PJ, Normark W, Carranza A, Cordoba D, Guerrero J, Rangin C, Bougault H, Cambon P, Hekinian R (1979) Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature (London) 277: 523–528

    Google Scholar 

  • Franklin JM, Sangster DM, Lydon JW (1981) Volcanic-associated massive sulfide deposits. Econ Geol 75th Anniv Vol: 485–627

    Google Scholar 

  • Franklin JM, Goodfellow WD, Lydon JW, Jonasson IR, Davis EE (1990) Middle valley; a major center of hydrothermal activity in a sedimented ridge crest, Northern Juan de Fuca Ridge. Abstracts with Programs. Geol Soc Am Annu Meet, Dallas, p A9

    Google Scholar 

  • Franklin JM, Gibson HL, Jonasson, IR, Galley AG (2005) Volcanogenic massive sulfide deposits. Econ Geol 100th Ann Vol: 523–560

    Google Scholar 

  • Furnes H, de Witt M, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of Earth's oldest ophiolite. Science 315: 1704–1707

    Google Scholar 

  • Galley AG, Koski RA (1999) Setting and characteristics of ophiolite-hosted volcanogenic massive sulfide deposits. Rev Econ Geol 8: 221–246

    Google Scholar 

  • Gemmell JB, Herrmann W (eds) (2001) A special issue devoted to alteration associated with volcanic-hosted massive sulphide deposits, and its exploration significance. Econ Geol 96, No 5

    Google Scholar 

  • Geological Society of America (1979) International Atlas of Ophiolites. Geol Soc Am Map and Chart Ser MC-33

    Google Scholar 

  • Gifkins C, Herrmann W, Large R (2005) Altered volcanic rocks – A guide to description and interpretation. Centre Ore Dep Res, Univ Tas

    Google Scholar 

  • Gilbert LA, McDuff RE, Johnson HP (2007) Porosity of the upper edifice of Axial Seamount. Geology 35: 49–52

    Google Scholar 

  • Glasby GP, Iizasa K, Yuasa M, Usui A (2000) Submarine hydrothermal mineralization of the Izu-Bonin arc, south of Japan: an overview. Marine Geores Geotech 18: 141–176

    Google Scholar 

  • Goldberg I (1976) A preliminary account of the Otjihase copper deposit, South West Africa. Econ Geol 71: 384–390

    Google Scholar 

  • Goodfellow WD, Zierenberg RA (1999) Genesis of massive sulfide deposits at sediment-covered spreading centers. Rev Econ Geol 8: 297–324

    Google Scholar 

  • Govett GJS, Pantanzis TM (1971) Distribution of Cu, Zn, Ni and Co in the Troodos pillow lava series, Cyprus. Trans Inst Min Metall 80: B1327–B1346

    Google Scholar 

  • Graham UM, Bluth GJ, Ohmoto H (1988) Sulfide-sulfate chimneys on the East Pacific Rise, 11 and 13°N latitudes. Part I: mineralogy and paragenesis. Can Mineral 26: 487–504

    Google Scholar 

  • Grassle JF (1983) Introduction to the geology of hydrothermal vents. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 665–676

    Google Scholar 

  • Groves DI, Vielreicher RM, Goldfarb RJ, Condie KC (2005) Controls on the heterogeneous distribution of mineral deposits through time. Geol Soc Lond Spec Publ 248: 71–101

    Google Scholar 

  • Gu Y-J, Lerner-Lam AL, Dziewonski AM, Ekstrom G (2005) Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth Planet Sci Lett 232: 259–272

    Google Scholar 

  • Hadjistavrinou Y, Constantinou G (1982) Cyprus. In: Dunning, FW, Mykura W, Slater D (eds) Mineral deposits of Europe, Vol 2. Inst Min Metall, London, pp 255–277

    Google Scholar 

  • Halbach P, Nakamura K, Washner M, Lange J, Sakai H, Kaselitz L, Hansen RD, Yamano M, Post J, Prause B, Seifert R, Michaelis W, Teichmann F, Kinoshita M, Märten A, Ishibashi J, Czerwinski S, Blum N (1989) Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature 338: 496–499

    Google Scholar 

  • Hamilton WB (2003) An alternative Earth. GSA Today 13: 4–12

    Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Seafloor tectonics and submarine hydrothermal systems. Econ Geol 100th Ann vol: 111–141

    Google Scholar 

  • Haymon RM, Kastner M (1981) Hot spring deposit on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth Planet Sci Lett 53:363–381

    Google Scholar 

  • Haymon RM, Koski RA, Sinclair C (1984) Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail Ophiolite, Oman. Science 223:1407–1409

    Google Scholar 

  • Haymon RM, Fornari DJ, Von Damm KL, Lilley MD, Perfit MR, Edmond JM,. Shanks WC, Lutz RA, Grebmeier JM, Carbotte S (1993) Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45’ 52” N: Direct submersible observations of seafloor phenomena associated with an eruption event in April 1991. Earth Planet Sci Lett 119: 85–101

    Google Scholar 

  • Hekinian R, Fevrier M, Bischoff JL, Picot P, Shanks WC (1980) Sulfide deposits from the East Pacific Rise near 21°N. Science 207:1433–1444

    Google Scholar 

  • Hekinian R, Fevrier M, Avedik F, Cambon P, Charlou JL, Needham HD, Raillard J, Boulegue J, Merlivat L, Moinet A, Manganini S, Lange J (1983) East Pacific Rise near 13°N: geology of the hydrothermal fields. Science 219:1321–1324

    Google Scholar 

  • Hekinian R, Fouquet Y (1985) Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N. Econ Geol 80: 221–249

    Google Scholar 

  • Herzig PM, Hannington MD, Fouquet Y, Von Stackelberg U, Petersen S (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ Geol 88: 2182–2209

    Google Scholar 

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulphides at the modern seafloor: A review. Ore Geol Rev 10: 95–115

    Google Scholar 

  • Hess HH (1946) Drowned ancient islands of the Pacific Basin. Am J Sci 244: 722–791

    Google Scholar 

  • Hrischeva E, Scott SD, Weston R (2007) Metalliferous sediments associated with presently forming volcanogenic massive sulfides: the SuSu Knoll hydrothermal field, eastern Manus Basin, Papua New Guinea. Econ Geol 102: 55–73

    Google Scholar 

  • Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) (1995a) Seafloor hydrothermal systems – Physical, chemical, biological and geological interactions. Am Geophys Union, Monogr 91

    Google Scholar 

  • Humphris SE and 24 others (1995b) The internal structure of an active seafloor massive sulphide deposit. Nature 377: 713–716

    Google Scholar 

  • Huppert HE, Sparks RSJ (1984) Double-diffusive convection due to crystallization in magmas. Annu Rev Earth Planet Sci 12:11–37

    Google Scholar 

  • Huston DL (1999) Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: a review. Rev Econ Geol 8: 157–179

    Google Scholar 

  • Huston DL (2006) Mineralization and regional alteration at the Mons Cupri stratiform Cu-Zn-Pb deposit, Pilbara Craton, Western Australia. Mineral Depos 41: 17–32

    Google Scholar 

  • Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4: 171–200

    Google Scholar 

  • Huston DL, Brauhart CW, Drieberg SL, Davidson GJ, Groves DI (2001) Metal leaching and inorganic sulfate reduction in volcanic-hosted massive sulfide mineral systems: Evidence from the paleo-Archean Panorama district, Western Australia. Geology 29: 687–690

    Google Scholar 

  • Huston DL, Hickman AH, Collins PLF (eds) (2002) A special issue devoted to the Early to Middle Archean mineral deposits of the North Pilbara terrain, Western Australia. Econ Geol 97, No 4

    Google Scholar 

  • Huston DL, Morant P, Pirajno F, Cummins B, Baker D, Mernagh TP (2007) Palaeoarchean mineral deposits of the Pilbara Craton: genesis, tectonic environment and comparisons with younger deposits. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds), Earth’s oldest rocks, Chpt 4.4, Elsevier, Amsterdam, pp 411–450

    Google Scholar 

  • Hutchinson RW (1980) Massive base metal deposits as guides to tectonic evolution. In: Strangeway D W (ed) The continental crust and its mineral deposits. Geol Ass Can Spec Pap 20: 659–684

    Google Scholar 

  • Iizasa K, Fiske RS, Ishizuka O, Yuasa M, Hashimoto J, Ishibashi J, Naka J, Horii Y, Fujiwara Y, Imal A, Koyama S (1999) A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera. Science 283: 975–977

    Google Scholar 

  • Iizasa K, Sasaki M, Matsumoto K, Shiokawa S, Tanahashi M and on-board scientists (2004) A first extensive hydrothermal field associated with Kuroko-type deposits in a silicic submarine caldera in a nascent rift zone, Izu-Ogasawara (Bonin) arc, Japan. Oceans 2004 MTS/EEE Conference: Techno-Ocean '04, Bridges across the oceans: Kobe, Japan, Marine Techn Soc pp 991–996

    Google Scholar 

  • Irvine TN, Keith DW, Todd SG (1983) The J-M platinum-palladium reef of the Stillwater Complex, Montana: II Origin by double-diffusive convection magma mixing and implications for the Bushveld Complex. Econ Geol 78: 1287–1348

    Google Scholar 

  • Ishihara S (ed) (1974) Geology of kuroko deposits. Min Geol Spec Issue 6

    Google Scholar 

  • Ishikawa Y, Mikami S, Hashimoto K (2004) Volcanic rock facies and volcano stratigraphy of the lower to middle Miocene in the Hokuroko District. Rpt on Region Surv, Ministry Econ Trade Ind Japan (in Japanese)

    Google Scholar 

  • Ixer RA, Alabaster T, Pearce JA (1984) Ore petrography and geochemistry of massive sulphide deposits within the Semail ophiolite, Oman. Trans Inst Min Metall 93: B114–B124

    Google Scholar 

  • Karpoff AM, Walter AV, Pflumio C (1988) Metalliferous sediments within lava sequences of the Sumail ophiolite (Oman): mineralogical and geochemical characterization, origin and evolution. Tectonophysics 151: 223–246

    Google Scholar 

  • Keays RR (1987) Principles of mobilization(dissolution) of metals in mafic and ultramafic rocks. The role of immiscible magmatic sulphides in the generation of hydrothermal gold and volcanogenic massive sulphide deposits. Ore Geol Rev 2: 47–63

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Fruh-Green G, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P & the AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412: 145–149

    Google Scholar 

  • Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids and life at Mid-ocean ridge spreading centers. Ann Rev Earth Planet Sci 30: 385–491

    Google Scholar 

  • Kennett J (1982) Marine Geology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kerr AC, Tarney J (2005) Tectonic evolution of the Caribbean and northwestern South America: the case for accretion of two Late Cretaceous oceanic plateaus. Geology 33: 329–332

    Google Scholar 

  • Kerr AC, Tarney J, Nivia A, Marriner GF, Saunders AD (1998) The internal structure of oceanic plateaus: inferences from obducted Cretaceous terranes in western Colombia and the Caribbean. Tectonophysics 292: 173–188

    Google Scholar 

  • Killick AM (1983) Sulphide mineralization at Gorob and its genetic relationship to the Matchless Member, Damara Sequence, SWA/Namibia. Geol Soc S Afr Spec Publ 11: 381–384

    Google Scholar 

  • Killick AM (2000) The Matchless Belt and associated sulphide mineral deposits, Damara Orogen, Namibia. Commun Geol Surv Namibia 12: 73–80

    Google Scholar 

  • Klemd R, Maiden K J, Okrusch M (1987) The Matchless copper deposit, South West Africa/Namibia: A deformed and metamorphosed massive sulfide deposit. Econ Geol 82: 587–599

    Google Scholar 

  • Klemd R, Maiden KJ, Okrusch M, Richter P (1989) Geochemistry of the Matchless metamorphosed massive sulfide deposit, South West Africa/Namibia: wall-rock alteration during submarine ore-forming processes. Econ Geol 84: 603–617

    Google Scholar 

  • Kobayashi K, Nakanishi M, Tamaki K, Ogawa Y (1998) Outer slope failure associated with the western Kuril and Japan trenches. Geophys J Inter 134: 356–372

    Google Scholar 

  • Konno U, Tsunogai U, Nakagawa F, Nakaseama M, Ishibashi J-I, Nunoura T, Nakamura K-I (2006) Liquid CO2 venting on the seafloor: Yonaguni KKnoll IV hydrothermal system, Okinawa Trough. Geophys Red Lett 33: L16607, doi:10.1029/2006GL026115

    Google Scholar 

  • Kuhn T, Herzig PM, Hannington MD, Garbe-Schönberg D, Stoffers P (2003) Origin of fluids and anhydrite precipitation in the sediment-hosted Grimsey hydrothermal field north of Iceland. Chem Geol 202: 5–21

    Google Scholar 

  • Kusky TM, Li JH, Glass A, Huang XN (2004) Origin and emplcament of Archaean ophiolites of the central orogenic belt, North China Craton. In Kusky TM (ed) Precambrian ophiolites and related rocks, Elsevier, Dev Precambr Geol 13: 223–274

    Google Scholar 

  • Lambert IB, Sato T (1974) The kuroko and associated deposits of Japan: a review of their features and metallogenesis. Econ Geol 69: 1215–1236

    Google Scholar 

  • Large RR (1992a) Australian volcanic-hosted massive sulfide deposits: features, styles and genetic models. Econ Geol 87: 471–510

    Google Scholar 

  • Large RR (ed) (1992b) A special issue devoted to Australian volcanic-hosted sulfide (VMS) deposits and their volcanic environment. Econ Geol 87, No 3

    Google Scholar 

  • Large RR, McPhie J, Gemmell JB, Herrmann W, Davidson GJ (2001) The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia. Econ Geol 96: 913–938

    Google Scholar 

  • Laznicka P (2006) Giant metallic deposits – future sources of industrial metals. Springer

    Google Scholar 

  • Lentz DR (ed) (2006) Volcanic-hosted massive sulfide deposits and their geological settings in the Bathurst Mining Camp, New Brunswick. Expl Min Geol 15, Nos 3–4

    Google Scholar 

  • Li JG, Kusky TM, Huang XN (2002) Archean podiform chromitites and mantle tectonites in ophiolitic melange, North China Craton: a record of early oceanic mantle processes. GSA Today July Iss: 4–11

    Google Scholar 

  • Li JG, Kusky TM, Niu XL, Jun F, Polat A (2004) Neoarchean massive sulfide of Wutai mountain, North China: a black smoker chimney and mound complex within 2.50 Ga-old oceanic crust. In Kusky TM (ed) Precambrian ophiolites and related rocks, Elsevier, Dev Precambr Geol 13, pp 339–362

    Google Scholar 

  • Little CTS (2002) The fossil record of hydrothermal vent communities. Cahiers Biol Marine 43: 313–316

    Google Scholar 

  • Long X, Qi H, Pirajno F, Ni PZ, Du JX, Wei OR (2008) Possible correlation between a mantle plume and the evolution of the Paleo-Tethys ocean: evidence from a volcanic rifted margin in the Xiaru-Tuoding area, Yunnan, SW China. Lithos 100: 112–126

    Google Scholar 

  • Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet Sci Lett 73: 211–225

    Google Scholar 

  • Lonsdale P, Bischoff JL, Burns VM, Kastner M, Sweeney RE (1980) A high-temperature hydrothermal deposit on the seabed at a gulf of California spreading center. Earth Planet Sci Lett 49: 8–20

    Google Scholar 

  • Lupton JE and 15 others (2006) Submarine venting of liquid carbon dioxide on a Mariana Arc volcano. Geochem Geophys Geosyst G3 7(6): Q08007, doi:10.1029/2005GC001152

    Google Scholar 

  • Maclean WH, Hoy LD (1991) Geochemistry of hydrothermally altered rocks at the Horne Mine, Noranda, Quebec. Econ Geol 86: 506–528

    Google Scholar 

  • Malahoff A, McMurtry GM, Wiltshire JC, Yeh HW (1982) Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature 298: 234–239

    Google Scholar 

  • Mamberti M, Lapierre H, Bosch D, Jaillard E, Ethien R, Hernandez J, Polve M (2003) Accreted fragments of the late Cretaceous Caribbean-Colombian plateau in Ecuador. Lithos 66: 173–199

    Google Scholar 

  • Marsh JS (1973) Relationships between transform directions and alkaline igneous rock lineaments in Africa and South America. Earth Planet Sci Lett 18: 317–323

    Google Scholar 

  • Martin D McB, Thorne AM (2004) Tectonic setting and basin evolution of the Bangemall Supergroup in the northwestern Capricorn Orogen. Precambr Res 128: 385–409

    Google Scholar 

  • McCaig AM, Cliff RA, Escartin J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volume of black smoker fluids. Geology 35: 935–938

    Google Scholar 

  • McNutt MK, Caress DW, Reynolds J, Jordhal KA Duncan RA (1997) Failure of plume theory to explain midplate volcanism in the southern Austral islands. Nature 389: 479–482

    Google Scholar 

  • Menzies MA, Klemperer SL, Ebinger CJ, Baker J (2002) Characteristics of volcanic rifted margins. Geol Soc Am Spec Pap 362: 1–14

    Google Scholar 

  • Minniti M, Bonavia FF (1984) Copper-ore grade hydrothermal mineralization discovered in a seamount in the Tyrrhenian sea (Mediterrenean): is the mineralization related to porphyry-coppers or to base metal lodes? Marine Geol 59: 271–282

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters (2006) A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem Geophys Geosyst 7: 10 November 2006

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230: 42–43

    Google Scholar 

  • Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139

    Google Scholar 

  • Moroni M (1990) The geology, petrology and geochemistry of the mineralization and hydrothermal alteration at Ongeama, Ongombo and the Matchless West Extension, Namibia. Unpubl MSc thesis, Rhodes University, Grahamstown, South Africa

    Google Scholar 

  • Morozumi H, Ishikawa N, Ishikawa Y (2006) Relationship between Kuroko mineralization and paleostress inferred from vein deposits and Tertiary granitic rocks in and around the Hokuroko district, northeast Japan. Econ Geol 101: 1345–1357

    Google Scholar 

  • Mueller WU, Marquis R, Thurston P (eds) (2002) Evolution of the Archean Abitibi greenstone belt abd adjacent terranes: New insights from geochronology, geochemistry, structure and facies analysis. Precambr Res Spec Iss 115, Nos 1–4

    Google Scholar 

  • Mueller WU, Stix J, White JDL, Corcoran PL, Lafrance B, Daigneault R (2008) Characterization of Archean subaqueous calderas in Canada: physical volcanology, carbonate-rich hydrothermal alteration and a new exploration model. In: Gottsmann J, Martí J (eds), Caldera volcanoes: analysis, modeling and response. Developments in Volcanology 10, Chapter 5 Elsevier, pp 183–232

    Google Scholar 

  • Naden J, Kilias SP, Fiona Darbyshire DP (2005) Active geothermal systems with entrained seawater as modern analogues for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geology 33: 541–544

    Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits – Geology, geochemistry and exploration. Springer, Berlin

    Google Scholar 

  • Nehlig P, Juteau T (1988) Deep crustal seawater penetration and circulation at ocean ridges: evidence from the Oman ophiolite. Mar Geol 84: 209–228

    Google Scholar 

  • Ohmoto H (1983) Geological, paleontological and tectonic studies, Pt 1. Geologic history of the Green Tuff Region. Econ Geol Monogr 5: 9–23

    Google Scholar 

  • Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10: 135–177

    Google Scholar 

  • Ohmoto H, Rye RO (1974) Hydrogen and oxygen isotope compositions of fluid inclusions in the Kuroko deposits, Japan. Econ Geol 69: 947–953

    Google Scholar 

  • Ohmoto S, Skinner B J (eds) (1983) The kuroko and related volcanogenic massive sulfide deposits. Econ Geol Monogr 5

    Google Scholar 

  • Ohmoto H, Takahashi T (1983) Geological, paleontological and tectonic studies, Pt 3. Submarine calderas and kuroko genesis. Econ Geol Monogr 5: 39–54

    Google Scholar 

  • Ohmoto H, Kakegawa T, Lowe DR (1993) 3.4 billion year-old biogenic pyrites from Barberton, South Africa: sulphur isotope evidence. Science 262: 555–557

    Google Scholar 

  • Ohtagaki, T, Tsukada, Y, Hirayama, H, Fujioka, H, Miyoshi, T (1974) Geology of the Shakanai mine, Akita Prefecture. Min Geol Spec Iss 6:131–140

    Google Scholar 

  • Oudin E, Constantinou G (1984) Black smoker chimney fragments in Cyprus sulphide deposits. Nature 308: 349–352

    Google Scholar 

  • Parson LM, Walker CL, Dixon DR (eds) (1995) Hydrothermal vents and processes. Geol Soc Lond Spec Publ 87

    Google Scholar 

  • Pašava J, Vymazalová A, Petersen S (2007) PGE fractionation in seafloor hydrothermal systems: examples from mafic- and ultramafic-hosted hydrothermal fields at the slow-speading Mid-Atlantic Ridge. Mineral Depos 42: 423–431

    Google Scholar 

  • Pearce JA (2003) Supra-subduction zone ophiolites: The search for modern analogues. Geol Soc Am Spec Pap 373: 269–293

    Google Scholar 

  • Pearson JM, Taylor WR, Barley ME (1996) Geology of the alkaline Gifford Creek Complex, Western Australia. Aus J Earth Sci 43: 299–309

    Google Scholar 

  • Peltonen P, Kontinen A, Hhma Hm Kuronen U (2007) New mineral deposit model for the Cu–Co–Zn–Ni–Ag–Au sulphide deposits in Outukumpu, Finland. SGA News 21: 1–9

    Google Scholar 

  • Penrose Conference Participants (1972) Penrose Field Conference Ophiolites. Geotimes 17: 24–25

    Google Scholar 

  • Peter JM, Scott SD (1988) Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can Mineral 26: 567–587

    Google Scholar 

  • Peter JM, Scott SD (1991) Hydrothermal mineralization in the Guaymas Basin, Gulf of California. Am Ass Pet Geol 47: 721–741

    Google Scholar 

  • Peter JM, Scott SD (1999) Windy Craggy, northeastern British Columbia: the world’s largest Besshi-type deposit. Rev Econ Geol 8: 261–295

    Google Scholar 

  • Petersen S, Herzig PM, Hannington MD, Jonasson IR, Arribas A (2002) Submarine gold mineralzation near Lihir Island, New Ireland fore-arc, Papua New Guinea. Econ Geol 97: 1795–1813

    Google Scholar 

  • Pirajno F (1992) Hydrothermal mineral deposits – Principles and fundamental concepts for the exploration geologist. Springer, Berlin

    Google Scholar 

  • Pirajno F (1980) Sub-seafloor mineralisation in rocks of the Matakaoa Volcanics around Lottin Point, East Cape, New Zealand. NZ J Geol Geophys 23: 313–334

    Google Scholar 

  • Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pirajno F (2004) Oceanic plateau accretion onto the northwestern margin of the Yilgarn Craton, Western Australia: implications for a mantle plume event at ca. 2.0 Ga. J Geodyn 37: 205–231

    Google Scholar 

  • Pirajno F (2007a) Mantle plumes, associated intraplate tectono-magmatic processes and ore systems. Episodes 30: 6–19

    Google Scholar 

  • Pirajno F (2007b) Ancient to modern Earth: the role of mantle plumes in the making of continental crust. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds), Earth’s oldest rocks, Chpt 4.4, Elsevier, Amsterdam, pp 1037–1064

    Google Scholar 

  • Pirajno F, Kinnaird JA, Fallick AE, Boyce AJ, Petzel VWF (1992) A preliminary regional sulphur isotope study of selected samples from mineralised deposits of the Damara Orogen, Namibia. Communs Geol Surv Namibia 8(1992/93): 81–97

    Google Scholar 

  • Pisutha-Arnond V, Ohmoto H (1983) Thermal history, and chemical and isotopic compositions of the ore forming fluids responsible for the Kuroko massive sulfide deposits in the Hokoruku district of Japan. Econ Geol Monogr 5:523–558

    Google Scholar 

  • Pratson LF, Haxby WF (1997) Panoramas of the seafloor. Sci Am 276: 67–71

    Google Scholar 

  • Prichard HM, Maliotis G (1998) Gold mineralisation associated with low-temperature, off-axis, fluid activity in the Troodos ophiolite, Cyprus. J Geol Soc, Lond 155: 223–231

    Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic masive sulphide deposit. Nature 405: 676–679

    Google Scholar 

  • Robertson AHF (1975) Cyprus umbers: basalt-sediment relationships in a Mesozoic ocean ridge. J Geol Soc London 131: 511–531

    Google Scholar 

  • Robinson PT, Zhou MF (2008) The origin and tectonic setting of ophiolites in China. J Asian Earth Sci 32: 301–307

    Google Scholar 

  • Rogers JWJ, Santosh M (2004) Continents and supercontinents. Oxford Univ Press, Oxford

    Google Scholar 

  • Rona PA (1980) TAG hydrothermal field: Mid-Atlantic Ridge crest at latitude 26°N. J Geol Soc London 137:385–402

    Google Scholar 

  • Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20: 1–104

    Google Scholar 

  • Rona PA (1986) Mineral deposits from seafloor hot springs. Sci Am 254:66–75

    Google Scholar 

  • Rona PA (1988) Hydrothermal mineralization at oceanic ridges. Can Mineral 26:431–465

    Google Scholar 

  • Rona PA (2003) Resources of the seafloor. Science 299: 673–674

    Google Scholar 

  • Rona PA, Scott SD (eds) (1993) A special issue on seafloor hydrothermal mineralization: new persectives. Econ Geol 88, No. 8

    Google Scholar 

  • Rona PA, Bostrom K, Laubier L, Smith KL (eds) (1983) Hydrothermal processes at seafloor spreading centers. Plenum, New ork, 796 pp

    Google Scholar 

  • Saez R, Almodavar GR, Pascual E (1996) Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol Rev 11: 429–451

    Google Scholar 

  • Sangster DF, Scott SD (1976) Precambrian stratabound massive sulphide ores of North America. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 6. Elsevier, Amsterdam, pp 129–222

    Google Scholar 

  • Sato T (1974) Distribution and geological setting of the kuroko deposits. Soc Min Geol Jpn Spec Issue 6:1–10

    Google Scholar 

  • Sawkins FJ (1990) Metal deposits in relation to plate tectonics. 2nd edn, Springer, Berlin

    Google Scholar 

  • Schneider GIS, Seeger KG (1992) Copper. In: The Mineral Resources of Namibia, 1st edn, Ministry of Mines and Energy, Geol Surv Handb

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and Planets. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Searle P L (1972) Mode of occurrence of the cupriferous pyrite deposits of Cyprus. Trans Inst Min Metall 81:B189–B197

    Google Scholar 

  • Seibold E, Berger WH (1982) The seafloor. An introduction to marine geology. Springer, Berlin

    Google Scholar 

  • Šengör AMC, Natal’in BA (2004) Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags. In Kusky TM (ed) Precambrian ophiolites and related rocks, Elsevier, Dev Precambr Geol 13: 675–726

    Google Scholar 

  • Sharpe R, Gemmell JB (2001) Alteration characteristics of the Archean Golden Grove Formation at the Gossan Hill deposit, Western Australia: Induration as a focusing mechanism for mineralizing hydrothermal fluids. Econ Geol 96: 1239–1262

    Google Scholar 

  • Sillitoe RH (1982) Extensional habits of rhyolite-hosted massive sulfide deposits. Geology 10:403–407

    Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions and epithermal precious metal deposits. Soc Econ Geol Spec Publ 10: 315–343

    Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97: 197–216

    Google Scholar 

  • Slack JF (1993) Descriptive and grade-tonnage models for Besshi-type massive sulphide deposits. Geol Ass Can Spec Pap 40: 343–371

    Google Scholar 

  • Sleep NH (1983) Hydrothermal convection at ridge axes. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 71–82

    Google Scholar 

  • Smalley TJ (1990) The Matchless West Extension cupreous pyrite deposit, Namibia; a field-based study. In: Abstr Geocongress '90 Cape Town. Geol Soc S Afr, pp 514–517

    Google Scholar 

  • Smewing JD, Christensen NI, Bartholomew ID, Browning P (1984) The stucture of the oceanic upper mantle and lower crust as deduced from a northern section of the Oman ophiolite. Geol Soc Spec Publ 13:41–54

    Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2005) It started with a plume – early Archaean basaltic proto-continental crust. Earth Planet Sci Lett 238: 284–297

    Google Scholar 

  • Solomon M, Groves DI (1994) The geology and origin of Australia’s mineral deposits. Clarendon Press, Oxford Sci Publ

    Google Scholar 

  • Solomon M, Tornos F, Large RR. Badham JNP, Both RA, Zaw K (2004) Zn–Pb–Cu volcanic hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition. Ore Geol Rev 25: 259–283

    Google Scholar 

  • Spence CD (1975) Volcanogenic features of the Vauze sulfide deposit, Noranda, Quebec. Econ Geol 70:102–114

    Google Scholar 

  • Spence CD, De Rosen-Spence AF (1975) The place of sulfide mineralization in the volcanic sequence at Noranda, Quebec. Econ Geol 70: 90–101

    Google Scholar 

  • Stix J, Kennedy B, Hannington M, Gibson H, Fiske R, Mueller W, Franklin J (2003) Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology 31: 375–378

    Google Scholar 

  • Tarney J, Dalziel IWD, de Wit MJ (1976) Marginal basins ‘Rocas Verdes’ complex from S Chile: a model for Archaean greenstone belt formation. In: Windley BF (ed) The Early History of the Earth, Wiley-Interscience, London, pp 131–146

    Google Scholar 

  • Tatsumi T (ed) (1970) Volcanism and ore genesis. Univ Press, Tokyo, Japan

    Google Scholar 

  • Taylor B (2006) The single largest oceanic plateau: Ontong-Java-Manihiki-Hikurangi. Earth Planet Sci Lett 241: 372–380

    Google Scholar 

  • Thompson G, Mottl MJ, Rona PA (1985) Morphology, mineralogy and chemistry of hydrothermal deposits from the TAG area, 26°N Mid-Atlantic Ridge. Chem Geol 49:243–257

    Google Scholar 

  • Thompson G, Humphris SE, Schroeder B, Sulanowska M, Rona PA (1988) Active vents and massive sulfides at 26°N (TAG) and 23°N (Snakepit) on the Mid-Atlantic-Ridge. Can Mineral 26: 697–711

    Google Scholar 

  • Toomey DR, Jouselin D, Dunn RA, Wilcock WSD, Detrick RS (2007) Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446: 409–414

    Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28: 259–307

    Google Scholar 

  • Tornos F, Heinrich CA (2007) Shale basins, sulphur-deficient ore brines and the formation of exhalative base metal deposits. Chem Geol doi:10.1016/j.chemgeo.2007.10.011

    Google Scholar 

  • Urabe T, Scott SD, Hattori K (1983) A comparison of foot-wall rock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. Econ Geol Monogr 5: 345–364

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DR, Pike G (2002) Geology and tectonic evolution of the Archean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97: 695–733

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Williams IR, Bagas L, Farrell TR (2006a) Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. West Aust Geol Surv Record 2006/15

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Huston DL (2006b) Geology and mineralization of the East Pilbara — a field guide. West Aust Geol Surv Record 2006/16

    Google Scholar 

  • Vearncombe S (1999) VMS potential determined via subvolcanic intrusions in Precambrian rocks: key geochemical signatures. Aust Inst Geoscie Bull 30: 97–103

    Google Scholar 

  • Vearncombe S, Barley ME, Groves DI, McNaughton NJ, Mikucki EJ, Vearncombe JR (1995) 3.26 Ga black smoker-type mineralisation in the Strelley Belt, Pilbara Craton, Western Australia. J Geol Soc London 152: 587–590

    Google Scholar 

  • Vearncombe S, Kerrich R (1999), Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with Early Archaean volcanogenic massive sulphide mineralization, Pilbara Craton. Precambr Res 98: 243–270

    Google Scholar 

  • Vearncombe S, Veancombe JR, Barley ME (1998) Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia. Precambr Res 88: 67–82

    Google Scholar 

  • Vogt JH (1995) Geology of the Jillawarra area, Bangemall Basin, Western Australia. Geol Surv West Aus, Rpt 40

    Google Scholar 

  • Vogt JH, Stumpfl EF (1987) Abra: A stratabound Pb–Cu–Ba mineralization in the Bangemall basin, Western Australia. Econ. Geol 82: 805–825

    Google Scholar 

  • Von Damm KL, Edmond JM, Grant B, Measures CI (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49: 2197–2220

    Google Scholar 

  • Von Damm KL, Grant B, Edmond JM (1983) Preliminary report on the chemistry of hydrothermal solutions at 21 North, East Pacific Rise. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 369–390

    Google Scholar 

  • Von Damm KL, Colodner DC,. Edmonds HN (1992) Hydrothermal fluid chemistry at 9–10°N EPR '92: big changes and still changing. EOS, Trans Am Geophys Un 73: 524

    Google Scholar 

  • Von Damm KL, Oosting SE, Kozlowski R, Buttermore LG, Colodner DC, Edmonds HN, Edmond JM, Grebmeler JM (1995) Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375: 47–50

    Google Scholar 

  • Wallace PJ, Frey FA, Weis D, Coffin MF (2002) Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen archipelago. J Pet 43: 1105–1108

    Google Scholar 

  • Wessel P (1997) Sizes and ages of seamounts using remote sensing: implications for intraplate volcanism. Science 277: 802–805

    Google Scholar 

  • Wilson JT (1963) A possible origin for the Hawaiian islands. Can J Phys 41: 863–870

    Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Unwin Hyman, London

    Google Scholar 

  • Wolfe CJ, Bjarnason IG, VanDecar J, Solomon SC (1997) The anatomy of a mantle plume: seismic structure of the Iceland hospot. Nature 385: 245–247

    Google Scholar 

  • Wyman DA, Kerrich R, Polat A (2002) Assembly of Archean cratonic mantle lithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretion complex. Precambr Res 115: 37–62

    Google Scholar 

  • Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a seafloor hydrothermal system. Nature 383: 420–423

    Google Scholar 

  • Young DA (2003) Mind over magma: The story of igneous petrology. Princeton Univ Press, Princeton

    Google Scholar 

  • Zierenberg RA and 27 others (1998) The deep structure of a seafloor hydrothermal deposit. Nature 392: 485–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Pirajno .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pirajno, F. (2009). Submarine Hydrothermal Mineral Systems. In: Hydrothermal Processes and Mineral Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8613-7_7

Download citation

Publish with us

Policies and ethics