Skip to main content

Schizophrenia is thought to be a neurodevelopmental disorder, and both genetic and non-genetic risk factors associated with the disease are related to neural development and function. However, no one mechanism has yet been proposed that explains the entire pathology of the disorder. One pathway that is clearly involved, however, is signaling via GABA. Post-mortem investigations reveal deficits in GABA transmission and altered localization of some GABAergic interneurons in the brains of schizophrenic patients. Furthermore, GABAergic signaling during early cortical development influences neuronal migration and later enhances synapse formation. Modulators of GABA signaling, including the neuroactive steroids, are therefore critical for normal neurodevelopment. Neurosteroids, including allopregnanolone, are potent, endogenous, stress-responsive modulators of GABAA receptor function. Cortical neurosteroid levels are dynamically regulated across embryonic and early postnatal development, and may differentially affect GABAA receptor function across distinct ontological periods. Furthermore, neuroactive steroid levels are increased in response to gestational stress or infection, both of which are risk factors associated with the development of a schizophrenia-vulnerable phenotype. The unique situation of neurosteroids at the junction of stress and GABA transmission makes them an important mechanism linking stress and neurodevelopmental vulnerability, as in the etiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 2005; 10(1):40–68.

    PubMed  CAS  Google Scholar 

  2. Kinney DK, Jacobsen B, Jansson L, Faber B, Tramer SJ, Suozzo M. Winter birth and biological family history in adopted schizophrenics. Schizophr Res 2000; 44:95–103.

    PubMed  CAS  Google Scholar 

  3. McNeil TF, Cantor-Graae E, Weinberger DR. Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 2000; 157:203–212.

    PubMed  CAS  Google Scholar 

  4. Benes FM. The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. J Psychiatr Res 1997; 31:257–275.

    PubMed  CAS  Google Scholar 

  5. Rose JE, Woolsey CN. The Orbitofrontal Cortex and its connections with the Medial Dorsal nucleus in rabbit, sheep, and cat. Res Publ Ass Nerv Ment Dis 1948; 27:210–232.

    Google Scholar 

  6. Van Eden CG. Development of connections between the mediodorsal nucleus of the thalamus and the prefrontal cortex in the rat. J Comp Neurol 1986; 244:349–359.

    PubMed  CAS  Google Scholar 

  7. Van Eden CG, Uylings H. Postnatal cytoarchetectonic development of the prefrontal cortex in the rat. J Comp Neurol 1985; 241:253–267.

    PubMed  CAS  Google Scholar 

  8. Kuroda M, Yokofujita J, Murakami K. An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 1998; 54:417–458.

    PubMed  CAS  Google Scholar 

  9. Del Rio JA, Soriano E, Ferrer I. Development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 1992; 326:501–526.

    PubMed  CAS  Google Scholar 

  10. Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL. GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl-channels. J Neurosci 2001; 21:2343–2360.

    PubMed  CAS  Google Scholar 

  11. Owens DF, Liu X, Kriegstein AR. Changing properties of GABA (A) receptor-mediated signaling during early neocortical development. J Neurophysiol 1999; 82:570–583.

    PubMed  CAS  Google Scholar 

  12. Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 2002; 3:715–727.

    PubMed  CAS  Google Scholar 

  13. Pierce RC, Kalivas PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 1997; 25:192–216.

    PubMed  CAS  Google Scholar 

  14. Swerdlow NR, Lipska BK, Weinberger DR, Braff DL, Jaskiw GE, Geyer MA. Increased sensitivity to the sensorimotor gating-disruptive effects of apomorphine after lesions of medial prefrontal cortex or ventral hippocampus in adult rats. Psychopharmacology (Berl) 1995; 122:27–34.

    CAS  Google Scholar 

  15. Schwabe K, Koch M. Role of the medial prefrontal cortex in N-methyl-D-aspartate receptor antagonist induced sensorimotor gating deficit in rats. Neurosci Lett 2004; 355:5–8.

    PubMed  CAS  Google Scholar 

  16. Kodsi MH, Swerdlow NR. Regulation of prepulse inhibition by ventral pallidal projections. Brain Res Bull 1997; 43:219–228.

    PubMed  CAS  Google Scholar 

  17. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 1978; 15:339–343.

    PubMed  CAS  Google Scholar 

  18. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 2001; 156:234–258.

    CAS  Google Scholar 

  19. Cadenhead KS, Geyer MA, Braff DL. Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. Am J Psychiatry 1993; 150:1862–1867.

    PubMed  CAS  Google Scholar 

  20. Cadenhead KS, Serper Y, Braff DL. Transient versus sustained visual channels in the visual backward masking deficits of schizophrenia patients. Biol Psychiatry 1998; 43:132–138.

    PubMed  CAS  Google Scholar 

  21. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR. Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 1995; 122:35–43.

    CAS  Google Scholar 

  22. Wolf ME. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 1998; 54:679–720.

    PubMed  CAS  Google Scholar 

  23. Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 1993; 9:67–75.

    PubMed  CAS  Google Scholar 

  24. Purdy RH, Morrow AL, Moore PH, Jr., Paul SM. Stress-induced elevations of gammaaminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 1991; 88:4553–4557.

    PubMed  CAS  Google Scholar 

  25. Billiards SS, Walker DW, Canny BJ, Hirst JJ. Endotoxin increases sleep and brain allopregnanolone concentrations in newborn lambs. Pediatr Res 2002; 52:892–899.

    PubMed  CAS  Google Scholar 

  26. Grobin AC, Heenan EJ, Lieberman JA, Morrow AL. Perinatal neurosteroid levels influence GABAergic interneuron localization in adult rat prefrontal cortex. J Neurosci 2003; 23:1832–1839.

    PubMed  CAS  Google Scholar 

  27. Griffin LD, Gong W, Verot L, Mellon SH. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 2004; 10:704–711.

    PubMed  CAS  Google Scholar 

  28. Barbaccia ML, Roscetti G, Trabucchi M, Cuccheddu T, Concas A, Biggio G. Neurosteroids in the brain of handling-habituated and naive rats: effect of CO2 inhalation. Eur J Pharmacol 1994; 261:317–320.

    PubMed  CAS  Google Scholar 

  29. Barbaccia ML, Affricano D, Trabucchi M, Purdy RH, Colombo G, Agabio R, Gessa GL. Ethanol markedly increases “GABAergic” neurosteroids in alcohol-preferring rats. Eur J Pharmacol 1999; 384:R1–R2.

    PubMed  CAS  Google Scholar 

  30. VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL. Neuroactive steroid 3s-hydroxy-5–pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci 2000; 20:1982–1989.

    PubMed  CAS  Google Scholar 

  31. Kehoe P, Mallinson K, McCormick CM, Frye CA. Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Dev Brain Res 2000; 124:133–136.

    CAS  Google Scholar 

  32. Owens MJ, Ritchie JC, Nemeroff CB. 5α-Pregnane-3α, 21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: comparison with alprazolam. Brain Res 1992; 573:353–355.

    PubMed  CAS  Google Scholar 

  33. Grobin AC, Roth RH, Deutch AY. Regulation of the prefrontal cortical dopamine system by the neuroactive steroid 3α, 21-dihydroxy-5α-pregnane-20-one. Brain Res 1992; 578:351–356.

    PubMed  CAS  Google Scholar 

  34. Motzo C, Porceddu ML, Maira G, Flore G, Concas A, Dazzi L, Biggio G. Inhibition of basal and stress-induced dopamine release in the cerebral cortex and nucleus accumbens of freely moving rats by the neurosteroid allopregnanolone. J Psychopharmacol 1996; 10:266–272.

    CAS  Google Scholar 

  35. Patchev VK, Montkowski A, Rouskova D, Koranyi L, Holsboer F, Almeida OFX. Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events. J Clin Invest 1997; 99:962–966.

    PubMed  CAS  Google Scholar 

  36. Brixey SN, Gallagher BJ, III, McFalls JA, Jr., Parmelee LF. Gestational and neonatal factors in the etiology of schizophrenia. J Clin Psychol 1993; 49:447–456.

    PubMed  CAS  Google Scholar 

  37. Gilmore JH, Jarskog LF. Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 1997; 24:365–367.

    PubMed  CAS  Google Scholar 

  38. Marcelis M, Van Os J, Sham P, Jones P, Gilvarry C, Cannon M, McKenzie K, Murray R. Obstetric complications and familial morbid risk of psychiatric disorders. Am J Med Genet 1998; 81:29–36.

    PubMed  CAS  Google Scholar 

  39. Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry 2001; 58:1039–1046.

    PubMed  CAS  Google Scholar 

  40. Pedersen CB, Mortensen PB. Family history, place and season of birth as risk factors for schizophrenia in Denmark: a replication and reanalysis. Br J Psychiatry 2001; 179:46–52.

    PubMed  CAS  Google Scholar 

  41. Battle YL, Martin BC, Dorfman JH, Miller LS. Seasonality and infectious disease in schizophrenia: the birth hypothesis revisited. J Psychiatr Res 1999; 33:501–509.

    PubMed  CAS  Google Scholar 

  42. Hirst JJ, Yawno T, Nguyen P, Walker DW. Stress in pregnancy activates neurosteroid production in the fetal brain. Neuroendocrinology 2006; 84(4):264–74.

    PubMed  CAS  Google Scholar 

  43. Arnold SE. Neurodevelopmental abnormalities in schizophrenia: insights from neuropathology. Dev Psychopathol 1999; 11:439–456.

    PubMed  CAS  Google Scholar 

  44. Keller F, Persico AM. The neurobiological context of autism. Mol Neurobiol 2003; 28:1–22.

    PubMed  CAS  Google Scholar 

  45. Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr 2003; 15:567–571.

    PubMed  Google Scholar 

  46. Nofzinger EA. What can neuroimaging tell us about sleep disorders? Sleep Med 2004; 5(Suppl 1):S16–S22.

    PubMed  Google Scholar 

  47. Ricceri L, Minghetti L, Moles A, Popoli P, Confaloni A, De Simone R, Piscopo P, Scattoni ML, di Luca M, Calamandrei G. Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Exp Neurol 2004; 189(1):162–172.

    PubMed  CAS  Google Scholar 

  48. Segawa M. Neurophysiology of Tourette’s syndrome: pathophysiological considerations. Brain Dev 2003; 25(Suppl 1):S62–S69.

    PubMed  Google Scholar 

  49. Weinberger DR, Berman KF. Prefrontal function in schizophrenia: confounds and controversies. Phil Trans R Soc Lond B Biol Sci 1996; 351(1346):1495–1503.

    CAS  Google Scholar 

  50. McCarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA, Shenton ME. MRI anatomy of schizophrenia. Biol Psychiatry 1999; 45:1099–1119.

    PubMed  CAS  Google Scholar 

  51. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23:437–458.

    PubMed  CAS  Google Scholar 

  52. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45:17–25.

    PubMed  CAS  Google Scholar 

  53. Lewis DA. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Brain Res Rev 2000; 31:270–276.

    PubMed  CAS  Google Scholar 

  54. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122(Pt 4):593–624.

    PubMed  Google Scholar 

  55. Lewis DA. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharm 1997; 16(6):385–398.

    CAS  Google Scholar 

  56. Akbarian S, Bunney WE, Jr., Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993; 50:169–177.

    PubMed  CAS  Google Scholar 

  57. Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP. Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 1993; 12:924–929.

    Google Scholar 

  58. Ball S, Busatto GF, David AS, Jones SH, Hemsley DR, Pilowsky LS, Costa DC, Ell PJ, Kerwin RW. Cognitive functioning and GABAA/benzodiazepine receptor binding in schizophrenia: a 123I-Iomazenil SPET study. Biol Psychiatry 1998; 43:107–117.

    PubMed  CAS  Google Scholar 

  59. Kegeles LS, Humaran TJ, Mann JJ. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 1998; 44:382–398.

    PubMed  CAS  Google Scholar 

  60. Marx CE, Shampine LJ, Duncan GE, VanDoren MJ, Grobin AC, Massing MW, Madison RD, Bradford DW, Butterfield MI, Lieberman JA, Morrow AL. Clozapine markedly elevates pregnenolone in rat hippocampus, cerebral cortex, and serum: candidate mechanism for superior efficacy? Pharmacol Biochem Behav 2006; 84(4):598–608.

    PubMed  CAS  Google Scholar 

  61. Marx CE, Shampine LJ, Khisti RT, Trost WT, Bradford DW, Grobin AC, Massing MW, Madison RD, Butterfield MI, Lieberman JA, Morrow AL. Olanzapine and fluoxetine administration and coadministration increase rat hippocampal pregnenolone, allopregnanolone and peripheral deoxycorticosterone: implications for therapeutic actions. Pharmacol Biochem Behav 2006 Aug; 84(4):609–617.

    PubMed  CAS  Google Scholar 

  62. Lillrank SM, Lipska BK, Weinberger DR. Neurodevelopmental animal models of schizophrenia. Clin Neurosci 1995; 3:98–104.

    PubMed  CAS  Google Scholar 

  63. Aggleton JP, Saunders RC. The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory 1997; 5:49–71.

    PubMed  CAS  Google Scholar 

  64. Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999; 22:425–444.

    PubMed  CAS  Google Scholar 

  65. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL, Purohit DP, Haroutunian V, Jones L. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 2002; 159:59–65.

    PubMed  Google Scholar 

  66. Pakkenberg B. The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr Res 1992; 7:95–100.

    PubMed  CAS  Google Scholar 

  67. Pakkenberg B. Leucotomized schizophrenics lose neurons in the mediodorsal thalamic nucleus. Neuropathol Appl Neurobiol 1993; 19:373–380.

    PubMed  CAS  Google Scholar 

  68. Popken GJ, Bunney WE, Jr., Potkin SG, Jones EG. Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 2000; 97:9276–9280.

    PubMed  CAS  Google Scholar 

  69. Lewis DA, Cruz DA, Melchitzky DS, Pierri JN. Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 2001; 158:1411–1422.

    PubMed  CAS  Google Scholar 

  70. Woo TU, Miller JL, Lewis DA. Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 1997; 154:1013–1015.

    PubMed  CAS  Google Scholar 

  71. Gizerian SS, Morrow AL, Lieberman JA, Grobin AC. Neonatal neurosteroid administration alters parvalbumin expression and neuron number in medial dorsal thalamus of adult rats. Brain Res 2004; 1012:66–74.

    PubMed  CAS  Google Scholar 

  72. Zimmerberg B, McDonald BC. Prenatal alcohol exposure influences the effects of neuroactive steroids on separation-induced ultrasonic vocalizations in rat pups. Pharmacol Biochem Behav 1996; 55:541–547.

    PubMed  CAS  Google Scholar 

  73. Kolb B. Recovery from early cortical damage in rats. I. Differential behavioral and anatomical effects of frontal lesions at different ages of neural maturation. Behav Brain Res 1987; 25:205–220.

    PubMed  CAS  Google Scholar 

  74. Van Eden CG, Rinkens A, Uylings HB. Retrograde degeneration of thalamic neurons in the mediodorsal nucleus after neonatal and adult aspiration lesions of the medial prefrontal cortex in the rat. Implications for mechanisms of functional recovery. Eur J Neurosci 1998; 10:1581–1589.

    PubMed  CAS  Google Scholar 

  75. Kolb B, Nonneman AJ. Sparing of function in rats with early prefrontal cortex lesions. Brain Res 1978; 151:135–148.

    PubMed  CAS  Google Scholar 

  76. Kolb B, Elliott W. Recovery from early cortical damage in rats. II. Effects of experience on anatomy and behavior following frontal lesions at 1 or 5 days of age. Behav Brain Res 1987; 26:47–56.

    PubMed  CAS  Google Scholar 

  77. Van Eden CG, van Hest A, van Haaren F, Uylings HB. Effects of neonatal mediodorsal thalamic lesions on structure and function of the rat prefrontal cortex. Brain Res Dev Brain Res 1994; 80:26–34.

    PubMed  CAS  Google Scholar 

  78. Torp R, Hoover F, Danbolt NC, Storm-Mathisen J, Ottersen OP. Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anat Embryol (Berl) 1997; 195:317–326.

    CAS  Google Scholar 

  79. Berger UV, Hediger MA. Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization. Anat Embryol (Berl) 1998; 198:13–30.

    CAS  Google Scholar 

  80. Alcantara S, Ferrer I, Soriano E. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 1993; 188:63–73.

    CAS  Google Scholar 

  81. Bredy TW, Grant RJ, Champagne DL, Meaney MJ. Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 2003; 18:2903–2909.

    PubMed  Google Scholar 

  82. Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 1999; 19:7881–7888.

    PubMed  CAS  Google Scholar 

  83. Hevner RF, Daza RA, Englund C, Kohtz J, Fink A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 2004; 124:605–618.

    PubMed  CAS  Google Scholar 

  84. Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, Barker JL. GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 1996; 16:1808–1818.

    PubMed  CAS  Google Scholar 

  85. Behar TN, Smith SV, Kennedy RT, McKenzie JM, Maric I, Barker JL. GABA(B) receptors mediate motility signals for migrating embryonic cortical cells. Cereb Cortex 2001; 11:744–753.

    PubMed  CAS  Google Scholar 

  86. Behar TN, Schaffner AE, Scott CA, O’Connell C, Barker JL. Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. J Neurosci 1998; 18:6378–6387.

    PubMed  CAS  Google Scholar 

  87. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 2000; 10:899–909.

    PubMed  CAS  Google Scholar 

  88. Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 2001; 156:194–215.

    CAS  Google Scholar 

  89. Ellenbroek BA, Budde S, Cools AR. Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 1996; 75:535–542.

    PubMed  CAS  Google Scholar 

  90. Gruen RJ, Wenberg K, Selim M, Friedhoff AJ, Bradberry CW. Novelty-associated locomotion: correlation with cortical and sub-cortical GABAA receptor binding. Eur J Pharmacol 1996; 309:115–120.

    PubMed  CAS  Google Scholar 

  91. Varshavskaya VM, Ivanova ON, Yakimovskii AF. Motor behavior in rats after separate and combined administration of GABAergic agents into the neostriatum. Neurosci Behav Physiol 2004; 34:293–298.

    PubMed  CAS  Google Scholar 

  92. Swerdlow NR, Pitcher L, Noh HR, Shoemaker JM. Startle gating in rats is disrupted by chemical inactivation but not D2 stimulation of the dorsomedial thalamus. Brain Res 2002; 953:246–254.

    PubMed  CAS  Google Scholar 

  93. An JJ, Bae MH, Cho SR, Lee SH, Choi SH, Lee BH, Shin HS, Kim YN, Park KW, Borrelli E, Baik JH. Altered GABAergic neurotransmission in mice lacking dopamine D2 receptors. Mol Cell Neurosci 2004; 25:732–741.

    PubMed  CAS  Google Scholar 

  94. Japha K, Koch M. Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by haloperidol. Psychopharmacology (Berl) 1999; 144:347–354.

    CAS  Google Scholar 

  95. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25:1–27.

    PubMed  CAS  Google Scholar 

  96. Groves PM, Thompson RF. Habituation: a dual-process theory. Psychol Rev 1970; 77:419–450.

    PubMed  CAS  Google Scholar 

  97. Swerdlow NR, Varty GB, Geyer MA. Discrepant findings of clozapine effects on prepulse inhibition of startle: is it the route or the rat? Neuropsychopharmacology 1998; 18:50–56.

    PubMed  CAS  Google Scholar 

  98. Collins SL, Montano R, Izenwasser S. Nicotine treatment produces persistent increases in amphetamine-stimulated locomotor activity in periadolescent male but not female or adult male rats. Brain Res Dev Brain Res 2004; 153:175–187.

    PubMed  CAS  Google Scholar 

  99. Zavitsanou K, Cranney J, Richardson R. Dopamine antagonists in the orbital prefrontal cortex reduce prepulse inhibition of the acoustic startle reflex in the rat. Pharmacol Biochem Behav 1999; 63:55–61.

    PubMed  CAS  Google Scholar 

  100. Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH. Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 2000; 37:167–169.

    PubMed  CAS  Google Scholar 

  101. Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 2004; 7:841–846.

    PubMed  CAS  Google Scholar 

  102. van den Buuse M, Morris M, Chavez C, Martin S, Wang J. Effect of adrenalectomy and corticosterone replacement on prepulse inhibition and locomotor activity in mice. Br J Pharmacol 2004; 142:543–550.

    PubMed  Google Scholar 

  103. Lindley SE, Bengoechea TG, Schatzberg AF, Wong DL. Glucocorticoid effects on mesotelencephalic dopamine neurotransmission. Neuropsychopharmacology 1999; 21:399–407.

    PubMed  CAS  Google Scholar 

  104. Bakshi VP, Geyer MA. Ontogeny of isolation rearing-induced deficits in sensorimotor gating in rats. Physiol Behav 1999; 67:385–392.

    PubMed  CAS  Google Scholar 

  105. Wise SP, Jones EG. Development studies of thalamocortical and commissural connections in the rat somatic sensory cortex. J Comp Neurol 1978; 178:187–208.

    PubMed  CAS  Google Scholar 

  106. Park M, Kitahama K, Geffard M, Maeda T. Postnatal development of the dopaminergic neurons in the rat mesencephalon. Brain Dev 2000; 22(Suppl 1):S38–S44.

    PubMed  Google Scholar 

  107. Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG. Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 2002; 110:245–256.

    PubMed  CAS  Google Scholar 

  108. Smith SS, Gong QH, Li X, Moran MH, Bitran D, Frye CA, Hsu FC. Withdrawal from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J Neurosci 1998; 18:5275–5284.

    PubMed  CAS  Google Scholar 

  109. Smith SS. Withdrawal properties of a neuroactive steroid: implications for GABA(A) receptor gene regulation in the brain and anxiety behavior. Steroids 2002; 67:519–528.

    PubMed  CAS  Google Scholar 

  110. Mtchedlishvili Z, Sun CS, Harrison MB, Kapur J. Increased neurosteroid sensitivity of hippocampal GABAA receptors during postnatal development. Neuroscience 2003; 118:655–666.

    PubMed  CAS  Google Scholar 

  111. Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M, Williams K, Smith SS. Reversal of neurosteroid effects at alpha4beta2delta GABAA receptors triggers anxiety at puberty. Nat Neurosci 2007; 10(4):469–477.

    PubMed  CAS  Google Scholar 

  112. Asavaritikrai P, Lotto B, Anderson G, Price DJ. Regulation of cell survival in the developing thalamus: an in-vitro analysis. Exp Neurol 2003; 181(1):39–46.

    PubMed  Google Scholar 

  113. Grobin AC, Morrow AL. 3Alpha-hydroxy-5alpha-pregnan-20-one levels and GABA (A) receptor-mediated 36Cl (–) flux across development in rat cerebral cortex. Brain Res Dev Brain Res 2001; 131:31–39.

    PubMed  CAS  Google Scholar 

  114. Gizerian SS, Moy SS, Lieberman JA, Grobin AC. Neonatal neurosteroid administration results in development-specific alterations in prepulse inhibition and locomotor activity. Psychopharmacology (Berl) 2006; 186(3):334–342.

    CAS  Google Scholar 

  115. Grobin AC, Gizerian S, Lieberman JA, Morrow AL. Perinatal allopregnanolone influences prefrontal cortex structure, connectivity and behavior in adult rats. Neuroscience 2006; 138(3):809–819.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Gizerian, S.S. (2008). Neurosteroids in Cortical Development and the Etiology of Schizophrenia. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics