Skip to main content

Fatigue Crack Growth under Variable-Amplitude Loading

  • Chapter
Fatigue of Structures and Materials

Fatigue under Variable-Amplitude (VA) loading was discussed in the previous chapter. Key words of the discussion were: prediction of fatigue life until failures, the Miner rule and its shortcomings, fatigue damage of cycles with an amplitude below the fatigue limit, residual stress effects due to notch root plasticity, and service-simulation fatigue tests as an alternative to Miner rule predictions. The fatigue life was supposed to include the crack initiation period and the crack growth period until failure. It was tacitly assumed that the crack growth period was relatively short and could be disregarded. The present chapter is dealing with the growth of macrocracks under VA loading. The crack initiation period dealing with crack nucleation and microcrack growth is not addressed.

The propagation of macrocracks is a significant issue if fatigue cracks cannot be avoided, especially if safety or economy is involved. Dangerous situations can occur in pressure vessels, high-speed rotating masses (turbine disks, blades of wind turbines) and aircraft structures as some characteristic examples. Incidental cracks can be generated by a variety of conditions; such as surface damage, corrosion pits, material defects in welded joints, inferior production quality, etc. Furthermore, the fatigue life of a structure in service may cover many years. The occurrence of macrocracks can then be acceptable in order to avoid a low design stress level and a corresponding heavy structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schijve, J., Fatigue crack propagation in light alloy sheet material and structures. Advances in Aeronautical Sciences, Vol. 3, Pergamon Press (1961), pp. 387–408.

    Google Scholar 

  2. Schijve, J., Observations on the prediction of fatigue crack propagation under variable-amplitude loading. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595 (1976), pp. 3–23.

    Google Scholar 

  3. Mills, W.J. and Hertzberg, R.W., The effect of sheet thickness on fatigue crack retardation in 2024-T3 aluminum alloy. Engrg. Fracture Mech., Vol. 7 (1975), pp. 705–711.

    Article  Google Scholar 

  4. Petrak, G.S., Strength level effects on fatigue crack growth and retardation. Engrg. Fracture Mech., Vol. 6 (1974), pp. 725–733.

    Article  Google Scholar 

  5. Dahl, W. and Roth, G., On the influence of overloads on fatigue crack propagation in structural steels. Paper Technical University Aachen (1979).

    Google Scholar 

  6. Ling, M.R. and Schijve, J., Fractographic analysis of crack growth and shear Lip development under simple variable-amplitude loading. Fatigue Fract. Engng Mater. Struct., Vol. 13 (1990), pp. 443–456.

    Article  Google Scholar 

  7. Schijve, J., Four lectures on fatigue crack growth. Engrg. Fracture Mech., Vol. 11 (1979), pp. 176–221.

    Google Scholar 

  8. Chermahini, R.G., Shivakumar, K.N. and Newman, Jr., J.C., Three dimensional finite-element simulation of fatigue-crack growth and closure. Mechanics of Fatigue Crack Closure. J.C. Newman, Jr. and W. Elber (Eds.), ASTM STP 982 (1988), pp. 398–413.

    Google Scholar 

  9. Grandt, A.F., Three-dimensional measurements of fatigue crack closure. NASA-CR-175366, Washington (1984).

    Google Scholar 

  10. Sunder, R. and Dash, P.K., Measurement of fatigue crack closure through electron microscopy. Int. J. Fatigue, Vol. 4 (1982), pp. 97–105.

    Article  Google Scholar 

  11. McEvily, A.J., Current Aspects of Fatigue. Appendix: Overload Experiments. Fatigue 1977 Conference, University of Cambridge (1977).

    Google Scholar 

  12. Schijve, J., Fatigue damage accumulation and incompatible crack front orientation. Engrg. Fracture Mech., Vol. 6 (1974), pp. 245–252.

    Article  Google Scholar 

  13. Stubbington, C.A. and Gunn, N.J.F., Effects of fatigue crack front geometry and crystallography on the fracture toughness of an Ti-6Al-4V alloy. Roy. Aero. Est., TR 77158, Farnborough (1977).

    Google Scholar 

  14. Ryan, N.E., The influence of stress intensity history on fatigue-crack growth. Aero. Research Lab., Melbourne. Report ARL/Met. 92 (1973).

    Google Scholar 

  15. Schijve, J., Effect of load sequences on crack propagation under random and program loading. Engrg. Fracture Mech., Vol. 5 (1973), pp. 269–280.

    Article  Google Scholar 

  16. Saff, C.R. and Holloway, D.R., Evaluation of crack growth gages for service life tracking. Fracture Mech., R. Roberts (Ed.), ASTM STP 743 (1981), pp. 623–640.

    Google Scholar 

  17. Schijve, J., Fundamental and practical aspects of crack growth under corrosion fatigue conditions. Proc. Inst. Mech. Engrs., Vol. 191 (1977), pp. 107–114.

    Article  Google Scholar 

  18. Unpublished results, National Aerospace Laboratory NLR, Amsterdam.

    Google Scholar 

  19. Wanhill, R.J.H., The influence of starter notches on flight simulation fatigue crack growth. Nat. Aerospace Lab. NLR, Amsterdam, Report MP 95127 (1995).

    Google Scholar 

  20. Broek, D., Elementary Engineering Fracture Mechanics, 4th edn. Martinus Nijhoff Publishers, the Hague (1985).

    Google Scholar 

  21. Schijve, J., Vlutters, A.M., Ichsan, S.P. and ProvoKluit, J.C., Crack growth in aluminium alloy sheet material under flight-simulation loading. Int. J. Fatigue, Vol. 7 (1985), pp. 127–136.

    Article  Google Scholar 

  22. Schijve, J., The significance of flight simulation fatigue tests. Durability and Damage Tolerance in Aircraft Design, A. Salvetti and G. Cavallini (Eds.), EMAS, Warley (1985), pp. 71–170.

    Google Scholar 

  23. Willenborg, J. Engle, R.M. and Wood, H.A., A crack growth retardation model using an effective stress concept. AFFDL-TR71-1, Air Force Flight Dynamic Laboratory, Wright-Patterson Air Force Base (1971).

    Google Scholar 

  24. Wheeler, O.E., Spectrum loading and crack growth. J. Basic Engrg., Vol. 94 (1972), pp. 181–186.

    Google Scholar 

  25. Baudin, G. and Robert, M., Crack growth life time prediction under aeronautical type loading. Proc. 5th European Conf. on Fracture, Lisbon (1984), pp. 779–792.

    Google Scholar 

  26. de Koning, A.U., A simple crack closure model for prediction of fatigue crack growth rates under variable-amplitude loading. Fracture Mechanics, R. Roberts (Ed.), ASTM STP 743 (1981), pp. 63–85.

    Google Scholar 

  27. Padmadinata, U.H., Investigation of crack-closure prediction models for fatigue in aluminum sheet under flight-simulation loading. Doctor Thesis, Delft University of Technology, Delft (1990).

    Google Scholar 

  28. Aliaga, D. Davy, A. and Schaff, H., A simple crack closure model for predicting fatigue crack growth under flight simulation loading. Durability and Damage Tolerance in Aircraft Design, A. Salvetti and G. Cavallini (Eds.). EMAS, Warley (1985), pp. 605–630.

    Google Scholar 

  29. Padmadinata, U.H. and Schijve, J., Prediction of fatigue crack growth under flight-simulation loading with the modified CORPUS model. Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, C.E. Harris (Ed.). NASA Conf. Publ. 3274 (1994), pp. 547–562.

    Google Scholar 

  30. Ichsan S. Putra, Fatigue crack growth predictions of surface cracks under constant-amplitude and variable-amplitude loading. Doctor thesis, Delft University of Technology (1994).

    Google Scholar 

  31. Newman Jr., J.C. and Armen, H., Elastic-plastic analysis of a propagating crack under cyclic loading. AIAA J., Vol. 13 (1975), pp. 1017–1023.

    Article  MATH  Google Scholar 

  32. Ohji, K., Ogura, K. and Ohkubo, Y., Cyclic analysis of a propagating crack and its correlation with fatigue crack growth. Engrg. Fracture Mech., Vol. 7 (1975), pp. 457–463.

    Article  Google Scholar 

  33. Dugdale, D.S., Yielding of steel sheets containing slits. J. Mech. Phys. Solids, Vol. 8 (1960), pp. 100–104.

    Article  Google Scholar 

  34. Führing, H. and Seeger, T., Structural memory of cracked components under irregular loading. Fracture Mechanics, C.W. Smith (Ed.). ASTM STP 677 (1979), pp. 1144–1167.

    Google Scholar 

  35. Führing, H. and Seeger, T., Dugdale crack closure analysis of fatigue cracks under constant amplitude loading. Engrg. Fracture Mech., Vol. 11 (1979), pp. 99–122.

    Article  Google Scholar 

  36. Dill, H.D. and Saff, C.R., Spectrum crack growth prediction method based on crack surface displacement and contact analysis. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595 (1976) pp. 306–319.

    Google Scholar 

  37. Dill, H.D., Saff, C.R. and Potter, J.M., Effects of fighter attack spectrum and crack growth. Effects of Load Spectrum Variables on Fatigue Crack Initiation and Propagation, D.F. Bryan and J.M. Potter (Eds.). ASTM STP 714 (1980), pp. 205–217.

    Google Scholar 

  38. Newman, Jr., J.C., A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading. Methods and Models for Predicting Fatigue Crack Growth under Random Loading, J.B. Chang and C.M. Hudson (Eds.). ASTM STP 748 (1981), pp. 53–84.

    Google Scholar 

  39. Dougherty, D.J., de Koning, A.U. and Hillberry, B.M., Modelling high crack growth rates under variable amplitude loading. Advances in Fatigue Lifetime Predictive Techniques, ASTM STP 1122 (1992), pp. 214–233.

    Google Scholar 

  40. Wang, G.S. and Blom, F. A strip model for fatigue crack growth predictions under general load conditions. Engrg. Fract. Mech., Vol. 40, (1991), pp. 507–533.

    Article  Google Scholar 

  41. Bos, M.J., Development of an improved model for the prediction of fatigue crack growth in helicopter airframe structure. Proc. 24th ICAF Symposium, Naples, 16–18 May 2007, Vol. 1, L. Lazzeri and A. Salvetti (Eds.) (2007).

    Google Scholar 

  42. Skorupa, M. and Machniewicz, T., Some results on the strip yield model performance. Paper presented at the seminar held at TU Delft, 12 June 2007. To be published.

    Google Scholar 

  43. de Koning, A.U. and Liefting, G., Analysis of crack opening behavior by application of a discretized strip yield model. Mechanics of Fatigue Crack Closure, J.C. Newman, Jr. and W. Elber (Eds.). ASTM STP 982 (1988), pp. 437–458.

    Google Scholar 

  44. de Koning, A.U. and Dougherty, D.J., Prediction of low and high crack growth rates under constant andvariable amplitude loading. Fatigue Crack Growth under Variable Amplitude Loading, J. Petit et al. (Eds.). Elsevier (1989), pp. 208–217.

    Google Scholar 

  45. Siegl, J., Schijve, J. and Padmadinata, U.H., Fractographic observations and predictions on fatigue crack growth in an aluminium alloy under miniTWIST flight-simulation loading. Int. J. Fatigue, Vol. 13 (1991), pp. 139–147.

    Article  Google Scholar 

  46. Schijve, J., Fundamental aspects of predictions on fatigue crack growth under variable-amplitude loading. Theoretical Concepts and Numerical Analysis of Fatigue, A.F. Blom and C.J. Beevers (Eds.). EMAS (1992), pp. 111–130.

    Google Scholar 

  47. Schijve, J., Fatigue crack growth under variable-amplitude loading. Fatigue and Fracture, American Society for Materials, Handbook Vol. 19, ASM (1996), pp. 110–133. Some general references (see also [46, 47])

    Google Scholar 

  48. Skorupa, M., Machniewicz, T. and Skorupa, A., Applicability of the ASTM compliance offset method to determine crack closure levels for structural steel. Int. J. Fatigue, Vol. 29 (2007), pp. 1434–1451.

    Article  Google Scholar 

  49. Skorupa, M. and Skorupa A., Experimental results and predictions on fatigue crack growth in structural steel. Int. J. Fatigue, Vol. 27 (2005), pp. 1016–1028.

    Article  MATH  Google Scholar 

  50. Skorupa, M., Load interaction effects during fatigue crack growth under variable-amplitude loading. A literature review. Part I: Empirical trends. Part II: Qualitative interpretations. Fatigue Fract. Engrg. Mater. Struct., Vol. 21 (1999) pp. 987–1006, Vol. 22 (1999), pp. 905–926.

    Article  Google Scholar 

  51. Newman, Jr., J.C., Phillips, E.P. and Everett, Jr., R.A., Fatigue analysis under constant-and variable-amplitude loading using small-crack theory. NASA/TM-1999-209329 (1999).

    Google Scholar 

  52. Harter, J.A., Comparison of contemporary fatigue crack growth (FGG) prediction tools. Int. J. Fatigue, Vol. 21 (1999), pp. S181–S185.

    Article  Google Scholar 

  53. Newman, Jr., J.C., Wu, X.R., Swain, M.H., Zhao, W., Phillips, E.P. and Ding, C.F., Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part II: Crack closure and fatigue analyses. Fatigue and Fracture of Engineering Materials and Structures, Vol. 23 (1999), pp. 59–72.

    Google Scholar 

  54. Wu, X.R., Newman, Jr., J.C., Zhao, W., Swain, M.H., Ding, C.F., and Phillips, E.P., Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part I: Experimental and fracture mechanics analis. Fatigue Fract. Engrg. Mater. Struct., Vol. 21 (1998), pp. 1289–1306.

    Article  Google Scholar 

  55. Mitchell, M.R. and Landgraf. R.W. (Eds.), Advances in Life Time Predictive Techniques, ASTM STP 1122 (1992).

    Google Scholar 

  56. Newman, Jr., J.C. and Elber, W. (Eds.), Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988).

    Google Scholar 

  57. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595 (1976).

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Fatigue Crack Growth under Variable-Amplitude Loading. In: Schijve, J. (eds) Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6808-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6808-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6807-2

  • Online ISBN: 978-1-4020-6808-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics