Skip to main content

Mechanosensitive Channel TRPV4

A Micro-Machine Converting Physical Force into an Ion Flow

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

  • 1081 Accesses

Abstract

The transient receptor potential vanilloid 4 (TRPV4), a member of the TRP family that has a 6-transmembrane (TM) segment, was first identified as a hypoosmolality-activated Ca2+ permeable channel. The mechanism of opening by hypoosmolality is distinct from direct coupling of membrane tension with conformational changes, such as that which occurs with Msc or TREK, in which phospholipase A2 is sensitive to hypoosmolality and the resulting arachidonic acid metabolites open this channel. TRPV4 is, however, a “multi-micromachine” that senses more diverse physical stimuli and converts them to the Ca2+ signal in various mammalian tissues. Recent analyses suggest that TRPV4 and other molecules together constitute a physiological response, such as cell volume regulation, epithelial permeability, and vascular dilatation. A mouse lacking the TRPV4 gene appeared normal but had unexpected responses to various stimuli; this will provide a clue to elucidate a novel physiological, pathophysiological, and pharmacological significance in the sensation of physical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD. (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron. 39:497–511.

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD. (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452.

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD. (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79.

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD. (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26:3864–3874.

    PubMed  CAS  Google Scholar 

  • Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI.(2006) Transient Receptor Potential Vanilloid 4-Mediated Disruption of the Alveolar Septal Barrier. A Novel Mechanism of Acute Lung Injury. Circ Res (in press).

    Google Scholar 

  • Andrade YN, Fernandes J, Vazquez E, Fernandez-Fernandez JM, Arniges M, Sanchez TM, Villalon M, Valverde MA. (2005) TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol. 168:869–874.

    PubMed  CAS  Google Scholar 

  • Arniges M, Fernandez-Fernandez JM, Albrecht N, Schaefer M, Valverde MA (2006). Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281:1580–1586.

    PubMed  CAS  Google Scholar 

  • Arniges M, Vazquez E, Fernandez-Fernandez JM, Valverde MA. (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279:54062–54068.

    PubMed  CAS  Google Scholar 

  • Basavappa S, Pedersen SF, Jorgensen NK, Ellory JC, and Hoffmann EK. (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79: 1441–1449.

    PubMed  CAS  Google Scholar 

  • Becker D, Blase C, Bereiter-Hahn J, Jendrach M. (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435–2440.

    PubMed  CAS  Google Scholar 

  • Benham CD, Gunthorpe MJ, Davis JB. (2003) TRPV channels as temperature sensors Cell Calcium 33:479–487.

    PubMed  CAS  Google Scholar 

  • Boulant JA. (2000) Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 31: S157–S161, 2000.

    PubMed  Google Scholar 

  • Bourque CW, Oliet SH. (1997) Osmoreceptors in the central nervous system. Annu Rev Physiol 59: 601–619.

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 389, 816–824.

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313.

    PubMed  CAS  Google Scholar 

  • Caterina MJ. (2006) Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol. (in press).

    Google Scholar 

  • Chakfe Y, Bourque CW. (2000) Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nat Neurosci 3:572–579.

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Caterina MJ. (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem. 278:32037–32046.

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004a) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem. 279:21569–21575.

    CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. (2004b) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci. 24: 5177–5182.

    CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C. (2001) The trp ion channel family. Nat Rev Neurosci 2: 387–396.

    PubMed  CAS  Google Scholar 

  • Cohen DM (2005) TRPV4 and the mammalian kidney. Pflugers Arch. 451:168–175.

    PubMed  CAS  Google Scholar 

  • Colbert HA, Smith TL, Bargmann CI. (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–69.

    PubMed  CAS  Google Scholar 

  • Corey DP. (2006) What is the hair cell transduction channel? J Physiol. (in press).

    Google Scholar 

  • Cuajungco MP, Grimm C, Oshima K, D’hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, Plomann M, Heller S. (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762.

    PubMed  CAS  Google Scholar 

  • Dhaka A, Viswanath V, Patapoutian A. (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci. 29:135–161.

    PubMed  CAS  Google Scholar 

  • Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, Kinghorn I, See CG, Costigan M, Anand P, Woolf CJ, Crowther D, Sanseau P, Tate SN. (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics. 19:165–167.

    Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T. (2006) Cation channels of the transient receptor potential superfamily: Their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther. 2006 (in press).

    Google Scholar 

  • Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels.Circ Res. 97: 1270–1279.

    PubMed  CAS  Google Scholar 

  • Frangos JA, Eskin SG, McIntire LV, Ives CL. (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science. 227:1477–1479.

    PubMed  CAS  Google Scholar 

  • Fu Y, Subramanya A, Rozansky D, Cohen DM. (2006) WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol. 290:F1305–1314.

    PubMed  CAS  Google Scholar 

  • Gamba G. (2006) TRPV4: a new target for the hypertension-related kinases WNK1 and WNK4.Am J Physiol Renal Physiol. 290:F1303–4.

    PubMed  CAS  Google Scholar 

  • Gao X, Wu L, O’Neil RG.J (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. Biol Chem. 278:27129–27137.

    CAS  Google Scholar 

  • Greene CG, Pamella M. McMillan, SE. Barker, Purnima K, Margaret I. Burmeister LM, Lesperance LM. (2001) DFNA25, a Novel Locus for Dominant Nonsyndromic Hereditary Hearing Impairment, Maps to 12q21–24 Am. J Hum. Genet 68:254–260.

    PubMed  CAS  Google Scholar 

  • Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri NB, Lipski J. (2005) Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels.J Neurophysiol. 94:3069–80.

    PubMed  CAS  Google Scholar 

  • Gunthorpe MJ, Benham CD, Randall A, Davis JB. (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23: 183–191.

    PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M.J (2002) Heat-evoked activation of the ion channel, TRPV4. Neurosci. 22:6408–6414.

    CAS  Google Scholar 

  • Hebert SC, Brown EM, Harris HW. (1997) Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol 200:295–302.

    PubMed  CAS  Google Scholar 

  • Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. (2005) Homo- and heteromeric assembly of TRPV channel subunits J Cell Sci. 118:917–928.

    PubMed  CAS  Google Scholar 

  • Hoenderop JG, Nilius B, Bindels RJ. (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422.

    PubMed  CAS  Google Scholar 

  • Hori A, Minato K, Kobayashi S. (1999) Warming-activated channels of warmsensitiveneurons in rat hypothalamic slices. Neurosci Lett 275:93–96.

    PubMed  CAS  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279: 35741–35748.

    PubMed  CAS  Google Scholar 

  • Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA. (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 287:L272–278.

    PubMed  CAS  Google Scholar 

  • Jordt SE, Julius D. Molecular basis for species-specific sensitivity to “hot” chili peppers. (2002) Cell 108: 421–430.

    PubMed  CAS  Google Scholar 

  • Kochukov MY, McNearney TA, Fu Y, Westlund KN. (2006) Thermosensitive TRP Ion Channels Mediate Cytosolic Calcium Response in Human Synoviocytes. Am J Physiol Cell Physiol. 291: C424–432.

    PubMed  CAS  Google Scholar 

  • Koehler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J. (2006) Evidence for a Functional Role of Endothelial Transient Receptor Potential V4 in Shear Stress-Induced Vasodilatation. Arterioscler Thromb Vasc Biol. 26:1495–1502.

    CAS  Google Scholar 

  • Kotlikoff MI (2005) EDHF redux: EETs, TRPV4, and Ca2+ sparks. Circ Res. 97:1209–1210.

    PubMed  CAS  Google Scholar 

  • Krause JE, Chenard BL, Cortright DN (2005) Transient receptor potential ion channels as targets for the discovery of pain therapeutics.Curr Opin Investig Drugs 6:48–57.

    PubMed  CAS  Google Scholar 

  • Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H. (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics. 7:159.

    PubMed  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP. (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron. 250:277–289.

    Google Scholar 

  • Lee H, Iida T, Mizuno A, Suzuki M, Caterina MJ. (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci. 25:1304–1310.

    PubMed  CAS  Google Scholar 

  • Lenertz LY, Lee BH, Min X, Xu BE, Wedin K, Earnest S, Goldsmith EJ, Cobb MH. (2005) Properties of WNK1 and implications for other family members. J Biol Chem 280: 26653–26658.

    PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 103:525–535.

    PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM. (2003a) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A. 100:13698–13703.

    CAS  Google Scholar 

  • Liedtke W, Tobin DM, Bargmann CI, Friedman JM. (2003b) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 100:14531–6.

    CAS  Google Scholar 

  • Liedtke W, Simon SA. (2004) A possible role for TRPV4 receptors in asthma. Am J Physiol Lung Cell Mol Physiol. 287:L269–71.

    PubMed  CAS  Google Scholar 

  • Liedtke W. (2005a) TRPV4 as osmosensor: a transgenic approach. Pflugers Arch. 451:176–80.

    CAS  Google Scholar 

  • Liedtke W. (2005b) TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J Physiol. 567:53–8.

    CAS  Google Scholar 

  • Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ. (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res. 1077:187–199.

    PubMed  CAS  Google Scholar 

  • Liu X, Bandyopadhyay BB, Nakamoto T, Singh BB, Liedtke W, Melvin JE, Ambudkar IS. (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495.

    PubMed  CAS  Google Scholar 

  • Hernández M, Burillo SL, Crespo MS, Nieto ML. (1998) Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. Biol. Chem 273: 606–612.

    Google Scholar 

  • Iida T, Shimizu I, Nealen MI, Campbell A, Caterina M. (2005) Attenuated fever response in mice lacking TRPV1. Neuroscience let 378: 28–32.

    CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol. 7:179–185.

    PubMed  CAS  Google Scholar 

  • Martinez CG, Palao CM, Cases RP, Merino JM, Montiel F A. (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558.

    Google Scholar 

  • Mizuno A, Matsumoto N, Imai M, Suzuki M. (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol. 285: C96–101.

    PubMed  CAS  Google Scholar 

  • Montell C. (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Science’s STKE 10.

    Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V. (2002a) The TRP channels, a remarkable functional family. Cell 108: 595–598.

    CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham D, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu S, Zhu MX. (2002b) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9: 229–231.

    CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A. (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science. 307: 1468–1472.

    PubMed  CAS  Google Scholar 

  • Morris, CE, Sigurdson, WJ. (1989) Stretch-inactivated ion channels co-exist with stretch-activated ion channels. Science 243: 807–809.

    PubMed  CAS  Google Scholar 

  • Naeini SR, Witty MF, Seguela P, Bourque CW. (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci. 9:93–98.

    CAS  Google Scholar 

  • Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G. (2001a) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443:227–233.

    CAS  Google Scholar 

  • Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ. (2001b) The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 276: 1020–1025.

    CAS  Google Scholar 

  • Nilius B, Watanabe H, Vriens J. (2003) The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflugers Arch. 446:298–303.

    PubMed  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol. 286:C195–205.

    PubMed  CAS  Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch. 451:193–203.

    PubMed  CAS  Google Scholar 

  • Owsianik G, D’hoedt D, Voets T, Nilius B. (2006) Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol. 156:61–90.

    PubMed  CAS  Google Scholar 

  • Reiter B, Kraft R, Gunzel D, Zeissig S, Schulzke JD, Fromm M, Harteneck C.(2006) TRPV4-mediated regulation of epithelial permeability. FASEB J. 20:1802–1812.

    PubMed  CAS  Google Scholar 

  • Schumacher MA, Moff I, Sudanagunta SP, Levine JD. (2000) Molecular Cloning of an N-terminal Splice Variant of the Capsaicin Receptor. J. Biol. Chem 275: 2756 - 2762.

    PubMed  CAS  Google Scholar 

  • Shen, J., Harada S., N, Kubo N, Liu B, Mizuno A, Suzuki M, Yamashita T. (2006) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. Neuroreport 17:135–139.

    PubMed  CAS  Google Scholar 

  • Sidhaye VK, Guler AD, Schweitzer KS, D’Alessio F, Caterina MJ, King LS. (2006) Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci U S A. 103:4747–4752.

    PubMed  CAS  Google Scholar 

  • Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE. (2006) Bisandrographolide from Andrographis Paniculata activates TRPV4 channels. J Biol Chem. (in press).

    Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2:695–702.

    PubMed  CAS  Google Scholar 

  • Strotmann R, Schultz G, Plant TD. (2003) Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a carboxy terminal calmodulin binding site. J Biol Chem 278: 26541–26549.

    PubMed  CAS  Google Scholar 

  • Suzuki M, Sato J, Kutsuwada K, Ooki G, Imai M. (1999) Cloning of a stretch-inhibitable nonselective cation channel. J Biol Chem 274:6330–5335.

    PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M. (2003a) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668.

    CAS  Google Scholar 

  • Suzuki M, Watanabe Y, Oyama Y, Mizuno A, Kusano E, Hirao A, Ookawara S. (2003b) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett. 353:189–192.

    CAS  Google Scholar 

  • Suzuki M, Hirao A, Mizuno A. (2003c) Microtubule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4).J Biol Chem 278:51448–51453.

    CAS  Google Scholar 

  • Tabuchi K, Suzuki M, Mizuno A, Hara A. (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett. 382:304–308.

    PubMed  CAS  Google Scholar 

  • Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M. (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol. 125:929–934.

    PubMed  Google Scholar 

  • Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M. (2006) TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. Am J Physiol Renal Physiol. (in press).

    Google Scholar 

  • Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST. (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev. 71:444–452.

    PubMed  CAS  Google Scholar 

  • Tian W, Salanova M, Xu H, Lindsley JN, Oyama TT, Anderson S, Bachmann S, Cohen DM. (2004) Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments.Am J Physiol Renal Physiol. 287: F17–24.

    PubMed  Google Scholar 

  • Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M. (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279: 35133–35138.

    PubMed  CAS  Google Scholar 

  • Tsushima H, Mori M. (2006) Antidipsogenic effects of a TRPV4 agonist, 4{alpha}-phorbol 12, 13-didecanoate, injected into the cerebroventricle. Am J Physiol Regul Integr Comp Physiol. 290:R1736–1741.

    PubMed  CAS  Google Scholar 

  • Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B. (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710.

    PubMed  CAS  Google Scholar 

  • Voets T, Talavera K, Owsianik G, Nilius B. (2005) Sensing with TRP channels. Nat Chem Biol.1: 85–92.

    PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. (2003) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A. 101:396–401.

    PubMed  Google Scholar 

  • Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R. (2004) TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium. 36:19–28.

    PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B. (2005) Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium Circ Res. 28;:908–915.

    Google Scholar 

  • Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002a) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577.

    CAS  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. (2002b) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem. 277: 47044–47051.

    CAS  Google Scholar 

  • Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B. (2003a) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium. 33:489–495.

    CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. (2003b) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434–438.

    CAS  Google Scholar 

  • Wechselberger M, Wright CL, Bishop GA, Boulant JA (2006) Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. Am J Physiol Regul Integr Comp Physiol 291: R518–29.

    PubMed  CAS  Google Scholar 

  • Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. (2001) Human hypertension caused by mutations in WNK kinases. Science 293: 1107–1112.

    PubMed  CAS  Google Scholar 

  • Wissenbach U, Bodding M, Freichel M, Flockerzi V. (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485: 127–134.

    PubMed  CAS  Google Scholar 

  • Xu F, Satoh E, Iijima T. (2003) Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4.Br J Pharmacol. 140:413–421.

    PubMed  CAS  Google Scholar 

  • Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stressJ Biol Chem 278:11520–11527.

    PubMed  CAS  Google Scholar 

  • Xu H, Fu Y, Tian W, Cohen DM. (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol. 2290: F1103–9.

    Google Scholar 

  • Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863.

    PubMed  CAS  Google Scholar 

  • Yang XR, Lin MJ, McIntosh LS, Sham JS. (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–1276.

    PubMed  CAS  Google Scholar 

  • Zhang L, Jones S, Brody K, Costa M, Brookes SJ. (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol. 286:G983–991.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Suzuki, M. (2008). Mechanosensitive Channel TRPV4. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_9

Download citation

Publish with us

Policies and ethics