Skip to main content

Computational Studies of the Bacterial Mechanosensitive Channels

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

abstract

Bacterial mechanosensitive (MS) channels were first documented in giant spheroplasts of Escherichia coli during a survey of the bacterial cell membrane by the patch clamp some twenty years ago. Two major events that greatly advanced and kept the research on bacterial MS channels at the forefront of the MS channel research field include: (i) cloning of MscL and MscS, the MS channels of Large and Small conductance, and (ii) solving their 3D crystal structure. In addition to advancing further experimental studies of the bacterial MS channels by enabling the use of new techniques, such as EPR and FRET spectroscopy, these events also enabled theoretical approaches to be employed. In this chapter we will review recent computational approaches used to elucidate the molecular dynamics of MscL and MscS, which has significantly contributed to our understanding of basic physical principles of the mechanosensory transduction in living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajouz, B., Berrier, C., Besnard, M., Martinac, B. and Ghazi, A. (2000) Contributions of the different extramembraneous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J. Biol. Chem. 275: 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  • Aksimentiev, A., Schulten, K. (2005) Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map. Biophys. J. 88: 3745–3761.

    Article  PubMed  CAS  Google Scholar 

  • Anishkin, A., V. Gendel, N. A. Sharifi, C. S. Chiang, L. Shirinian, H. R. Guy and S. I. Sukharev (2003) On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. J. Gen. Physiol. 121: 227–244.

    Article  PubMed  CAS  Google Scholar 

  • Anishkin, A., Sukharev, S. (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS, Biophys. J. 86: 2883–2895.

    CAS  Google Scholar 

  • Bass, R.B., Strop, P., Barclay, M., Rees, D. (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298: 1582–1587.

    Article  PubMed  CAS  Google Scholar 

  • Beckstein, O., Biggin, P.C., Sansom, M.S.P. (2001) A hydrophobic gating mechanism for nanopores, J. Phys. Chem. B. 105: 12902–12905.

    Article  CAS  Google Scholar 

  • Beckstein, O., Sansom, M.S.P. (2003) Liquid-vapor oscillations of water in hydrophobic nanopores, Proc. Natl. Acad. Sci. USA 100: 7063–7068.

    Article  CAS  Google Scholar 

  • Beckstein, O., Sansom, M.S.P. (2004) The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores, Phys. Biol. 1: 42–52.

    CAS  Google Scholar 

  • Beckstein, O., Sansom, M.S.P. (2006) A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor, Phys. Biol. 3: 147–159.

    CAS  Google Scholar 

  • Berrier, C., Besnard, M., Ajouz, B., Coulombe, A., Ghazi, A. (1996) Multiple mechano-sensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Memb. Biol. 151: 175–187.

    Article  CAS  Google Scholar 

  • Betanzos, M., Chiang, C.-S., Guy, H.R., Sukharev, S. (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nature Struct. Biol. 9: 704–710.

    Article  PubMed  CAS  Google Scholar 

  • Bilston, L.E., Mylvaganam, K. (2002) Molecular simulations of the large mechanosensitive channel (MscL) under mechanical loading, FEBS Lett., 512: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Blount, P., Li, Y., Moe, P. C., and Iscla, I. (2007) Mechanosensitive channels gated by membrane tension: Bacteria and beyond. In: Mechanosensitive ion channels (a volume in the Mechanosensitivity in Cells and Tissues, Moscow Academia series), A. Kamkin, and I. Kiseleva, eds. (New York, Springer Press). (in press)

    Google Scholar 

  • Chang, G., Spencer, R., Lee, A., Barclay, M., Rees, D. (1998) Structure of the MscL homologue from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, G., Marrink, S.J., Mark, A.E. (2003) Simulation of MscL gating in a bilayer under stress, Biophys. J. 84: 2331–2337.

    PubMed  CAS  Google Scholar 

  • Corry, B., Rigby, P., Liu, Z.-W., Martinac, B. (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys. J. 89: L49-L51.

    Article  PubMed  CAS  Google Scholar 

  • Corry, B. (2006) An energy-efficient gating mechanism in the acetylcholine receptor suggested by molecular and Brownian dynamics, Biophys. J. 90: 799–810.

    Article  PubMed  CAS  Google Scholar 

  • Cruickshank, C.C., Minchin, R., Le Dain, A., Martinac, B. (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73: 1925–1931.

    PubMed  CAS  Google Scholar 

  • Dzubiella, J., Allen, R.J., Hansen, J.-P. (2004). Electric field-controlled water permeation coupled to ion transport through a nanopore. J. Chem. Phys. 120: 5001–5004.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, M.D., Booth, I.R., Miller, S. (2004) Gating the bacterial mechanosensitive channel: MscS a new paradigm? Curr., Opin. Microbiol. 7: 163–167.

    CAS  Google Scholar 

  • Elmore, D.E., Dougherty, D.A. (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel, Biophys. J. 81: 1345–1359.

    PubMed  CAS  Google Scholar 

  • Elmore, D.E., Dougherty, D.A. (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations, Biophys. J. 85: 1512–11524.

    PubMed  CAS  Google Scholar 

  • Gullingsrud, J., Kosztin, D., Schulten, K. (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J. 80: 2074–2081.

    PubMed  CAS  Google Scholar 

  • Gullingsrud, J., Schulten, K. (2003) Gating of MscL studied by steered molecular dynamics, Biophys. J. 85: 2087–2099.

    Article  PubMed  CAS  Google Scholar 

  • Gullingsrud, J., Schulten, K. (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating, Biophys. J. 86: 3496–3509.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sackmann, B., Sigworth, F.J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. Eur. J. Physiol. 391: 85–100.

    Article  CAS  Google Scholar 

  • Hummer, G., Rasaiah, J.C., Noworyta, J.P. (2001) Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414: 188–190.

    Article  PubMed  CAS  Google Scholar 

  • Kong, Y.F., Shen, Y.F., Warth, T.E., Ma, J.P. (2002) Conformational pathways in the gating of Escherichia coli mechanosensitive channel, Proc. Natl. Acad. Sci. USA 99: 5999–6004.

    Article  CAS  Google Scholar 

  • Koprowski, P., Kubalski, A. (2003) C-termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening, J. Biol. Chem. 278: 11237–11245.

    Article  PubMed  CAS  Google Scholar 

  • Levina, N., Totemeyer, S., Stokes, N.R., Louis, P., Jones, M.A., Booth, I.R. (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18: 1730–1737.

    Article  PubMed  CAS  Google Scholar 

  • Martinac, B.: Mechanosensitive channels in prokaryotes. Cellular Physiol. Biochem. 11(2): 61–76, 2001.

    Article  CAS  Google Scholar 

  • Martinac, B. (2005) Structural plasticity in MS channels. Nat. Struct. Mol. Biol. 12: 104–105.

    Article  PubMed  CAS  Google Scholar 

  • Martinac, B. (2006) Mechanosensitive channels. In: Biological Membrane Ion Channels: Dynamics, Structure, and Applications (eds. S. H. Chung, O. S. Andersen and V. Krishnamurthy. Springer, New York. Chapter 10, pp. 369–398.

    Google Scholar 

  • Martinac, B., Buechner, M., Delcour, A.H., Adler, J., Kung, C. (1987) Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA, 84: 2297–2301.

    Article  PubMed  CAS  Google Scholar 

  • Martinac, B., Kloda, A. (2003) Evolutionary origins of mechanosensitive ion channels. Progress Biophys. Mol. Biol. 82: 11–24.

    Article  CAS  Google Scholar 

  • Meyer, G.R., Gullingsrud, J., Schulten, K., Martinac, B. (2006) Molecular dynamics study of MscL interactions with a curved lipid bilayer, Biophys. J. 91: 1630–1637.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S., Bartlett, W., Chandrasekaran, S., Simpson, S., Edwards, M., Booth, I.R. (2003) Domain organisation of the MscS mechanosensitive channel of Escherichia coli, EMBO J. 22: 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, A.J., Martinac, B., Wilce, M.C.J. (1999) Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci. 8: 1915–1921.

    PubMed  CAS  Google Scholar 

  • Park, K.H., Berrier, C., Martinac, B., Ghazi, A. (2004) Purification and Functional Reconstitution of N-and C-Halves of the MscL Channel Biophys. J. 86: 2129–2136.

    Article  PubMed  CAS  Google Scholar 

  • Perozo, E., Kloda, A. Cortes, D.M. and Martinac, B. (2001) Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J. Gen. Physiol. 118: 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Perozo, E., Kloda, A., Cortes, D.M., Martinac, B. (2002a) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9: 696–703.

    Article  CAS  Google Scholar 

  • Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., Martinac, B. (2002b) Structure of MscL in the open state and the molecular mechanism of gating in mechanosensitive channels. Nature 418: 942–948.

    Article  CAS  Google Scholar 

  • Pivetti, C. D., Yen, M. R., Miller, S., Busch, W., Tseng, Y., Booth, I.R., & Saier M.H.J. (2003) Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev., 67, 66–85.

    Article  PubMed  CAS  Google Scholar 

  • Ruthe, H.J., Adler, J. (1985) Fusion of bacterial spheroplasts by electric fields. Biochim Biophys Acta. 819: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Saint, N., Lacapere, J.J., Gu, L-Q., Ghazi, A., Martinac, B. and Rigaud, J.L. (1998) A hexameric transmembrane pore revealed by two-dimensional crystallization of the large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem., 273: 14667–14670.

    Article  PubMed  CAS  Google Scholar 

  • Schumann, U., Edwards, M.D., Li, C., Booth, I.R. (2004) The conserved carboxy-terminus of the MscS mechanosensitive channel is not essential but increases stability and activity, FEBS Lett. 572: 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor, M., Schulten, K., (2004) Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS, Biophys. J. 87: 3050–3065.

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor, M., van der Straaten, T.A., Ravaioli, U., Schulten, K. (2006) Electrostatic properties of the mechanosensitive channel of small conductance MscS, Biophys. J. 90: 3496–3510.

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor, M. Vásquez, V., Perozo, E., Schulten, K. (2007) Ion conduction though MscS as determined by electrophysiology and simulation. Biophys. J. 92: 886–902.

    Article  PubMed  CAS  Google Scholar 

  • Spronk, S.A., Elmore, D.E., Dougherty, D.A. (2006) Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance, Biophys. J. 90: 3555–3569.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R., Kung, C. (1994) A large mechanosensitive channel in E. coli encoded by mscL alone. Nature 368: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev, S.I., Martinac, B., Arshavsky, V.Y., and Kung, C. (1993) Two types of mechanosensitive channels in the E. coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65: 177–183.

    PubMed  CAS  Google Scholar 

  • Tang, Y.Y., Cao, G.X., Chen, X., Yoo, J., Yethiraj, A., Cui, A. (2006) A finite element framework for studying the mechanical response of macromolecules: Application to the gating of the mechanosensitive channel MscL, Biophys. J. 91: 1248–1263.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, I-J., Zhen-Wei Liu, Z-W., Rayment, J, Norman, C., McKinley, A. and Martinac, B. (2005) The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity. Eur. Biophys. J. 34: 403–413.

    Article  PubMed  CAS  Google Scholar 

  • Vora, T., Corry, B., Chung, S.H. (2006) Brownian dynamics investigations into the conductance state of the MscS channel crystal structure, Biochim. Biophys. Acta 1758: 730–737.

    Article  PubMed  CAS  Google Scholar 

  • Valadie, H., Lacapcre, J.J., Sanejouand, Y.H., Etchebest, C. (2003) Dynamical properties of the MscL of Escherichia coli: A normal mode analysis, J. Mol. Biol. 332: 657–674.

    Article  PubMed  CAS  Google Scholar 

  • Wan, R., Li, J., Lu, H., Fang, H. (2005) Controllable water channel gating of nanometer dimensions, J. Am. Chem. Soc. 127: 7166–7170.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins, P., Phillips, R. (2004) Analytic models for mechanotransduction: Gating a mechanosensitive channel, Proc. Natl. Acad. Sci. USA, 101: 4071–4076.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Corry, B., Martinac, B. (2008). Computational Studies of the Bacterial Mechanosensitive Channels. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_4

Download citation

Publish with us

Policies and ethics