Skip to main content

Epi-Geneticization

Where biological and philosophical thinking meet

  • Chapter
The Influence of Genetics on Contemporary Thinking

Abstract

This volume discusses how contemporary genetics is present in and has an influence on domains other than the strict genetical or biological field of knowledge. It thus focuses on ‘the geneticization’ of (scientific) thinking. In order to give meaning to this concept, it needs to be addressed what contemporary genetics stands for and wherein its conceptual and practical approach towards living systems lies. Philosophy of biology has a long history in taking classical and molecular genetics under analysis, and has often described genetics as gene-centric and reductionist. Here, it is argued that this analysis has become outdated and that today ‘geneticization’ should be interpreted as ‘epi-geneticization’. This conceptual shift is supported by experimental research in molecular biology itself, showing that molecular biology is already taking up the challenge of approaching biology in less gene-centric terms. This holds implications for philosophy of biology in its debate on the gene concept, in particular, and in its study of scientific perspectives on biological organization, in general

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beurton PJ (2000) A unified view of the gene, or how to overcome reductionism. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, pp 286–316.

    Google Scholar 

  • Bolker JA (1995) Model systems in developmental biology. BioEssays 17 (5):451–455.

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol XII:138–163.

    Google Scholar 

  • Cubas P, Coral V, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161.

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1989) (1976) The selfish gene. New edition. Oxford University Press, Oxford.

    Google Scholar 

  • Falk R (2000) The Gene - A concept in tension. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, pp 317–348.

    Google Scholar 

  • Fogle T (2000) The dissolution of protein coding genes in molecular biology. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, pp 3–25.

    Google Scholar 

  • Gifford F (2000) Gene concept and genetic concepts. In: Beurton PJ, Falk R, Reinberger H-J (eds) The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, pp 40–68.

    Google Scholar 

  • Gilbert SF (1996) Enzymatic adaptation and the entrance of molecular biology into embryology. In: Sarkar S (ed) The philosophy and history of molecular biology: new perspectives. Kluwer Academic Press, Dordrecht, pp 101–123.

    Google Scholar 

  • Griesemer JR (2002) What is ‘epi’ about epigenetics? In: Van SL, Van de VG, De Waele D (eds) From epigenesis to epigenetics: the genome in context, vol 981, Annals of the New York Academy of Sciences, pp 97–110.

    Google Scholar 

  • Henikoff S, Matzke MA (1997) Exploring and explaining epigenetic effects. Trends Genet 13(8):293–295.

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1994) Epigenetics: an overview. Dev Gen 15:453–457.

    Article  CAS  Google Scholar 

  • Holliday R (1996) DNA methylation in eukaryotes: 20 years on. In: Russo VEA, Martienssen RA, Riggs AD (eds). Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 5–27.

    Google Scholar 

  • Jablonka E (1994) Inheritance systems and the evolution of new levels of individuality. J Theor Biol 170:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution: the lamarckian dimension. Oxford University Press, Oxford.

    Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. In: Van SL, Van de Vijver G, De Waele D (eds) From epigenesis to epigenetics: the genome in context, vol 981, Annals of the New York Academy of Sciences, pp 82–96.

    Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070.

    Article  PubMed  CAS  Google Scholar 

  • Kass SU, Wolffe AP (1996) Histones, Histone modification, and the inheritance of chromatin structure. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 529–545.

    Google Scholar 

  • Keller EF (1995) Refiguring life: metaphors of twentieth-century biology. Columbia University Press, New York.

    Google Scholar 

  • Lewin B (1998) The mystique of epigenetics. Cell 93:301–303.

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC (2001) Gene, organism and environment: a new introduction. In: Oyama S, Griffiths PE, Gray RD (eds) Cycles of contingency. developmental systems and evolution. The MIT Press, Cambridge, pp 55–58.

    Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074.

    Article  PubMed  CAS  Google Scholar 

  • Morange M (1998) (1994) A history of molecular biology. Original title: Histoire de la biologie molélaire. Trans by Cobb M. Harvard University Press, Cambridge.

    Google Scholar 

  • Morange M (2000) The developmental gene concept: history and limits. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, pp 193–218.

    Google Scholar 

  • Morange M (2001) The misunderstood gene. Transl by Cobb M from La Part des Génes, 1998, editions Odile Jacob. Harvard University Press, Cambridge.

    Google Scholar 

  • Morange M (2002) The relations between genetics and epigenetics: a historical point of view. In: Van SL, Van de Vijver G, De Waele D (eds) From epigenesis to epigenetics: The genome in context, vol 981, Annals of the New York Academy of Sciences, pp 50–60.

    Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in mouse. Nat Genet 23:314–318.

    Article  PubMed  CAS  Google Scholar 

  • Moss L (2001) Deconstructing the gene and reconstructing molecular developmental systems. In: Oyama S, Griffiths PE, Gray RD (eds). Cycles of contingency. Developmental systems and evolution. The MIT Press, Cambridge pp 85–98.

    Google Scholar 

  • Moss L (2003) What genes can’t do. MIT Press, Cambridge, MA.

    Google Scholar 

  • Nelkin D, Lindee MS (1995) The DNA mystique. The gene as a cultural icon. W H Freeman and Company, New York.

    Google Scholar 

  • Neumann-Held EM (2001) Let’s talk about genes: the process molecular gene concept and its context. In: Oyama S, Griffiths PE, Gray RD (eds) Cycles of contingency. Developmental systems and evolution. The MIT Press, Cambridge, pp 69–84.

    Google Scholar 

  • Neumann-Held EM, Rehmann-SC (1999). Individuation and reality of genes. A comment to Peter J. Beurton’s article: ‘Was sind Gene heute?’ Theory Biosci 118:85–95.

    Google Scholar 

  • Oyama S (1985) The ontogeny of information. Cambridge University Press, Cambridge, London.

    Google Scholar 

  • Oyama S, Griffiths PE, Gray RD (eds) (2001) Cycles of contingency. Developmental systems and evolution. The MIT Press, Cambridge.

    Google Scholar 

  • Pennsi E (2001) Behind the scenes of gene expression. Science 293 (Special issue on epigenetics):1064–1067.

    Article  Google Scholar 

  • Petronis A (2001) Human morbid genetics revisited: relevance of epigenetics. Trends Genet 17(3):142–146.

    Article  PubMed  CAS  Google Scholar 

  • Portin P (1993) The concept of the gene: short history and present status. The Q Rev Biol 68(2):173–223.

    Article  CAS  Google Scholar 

  • Rheinberger H-J (2000) Gene Concepts: fragments from the perspective of molecular biology. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, pp 219–239.

    Google Scholar 

  • Riggs AD, Martienssen RA, Russo VEA (eds) (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Robinson JD (1992) Aims and achievements of the reductionist approach in biochemistry/molecular biology/cell biology: a response to Kincaid. Philos Sci 59:465–470.

    Article  Google Scholar 

  • Roemer I, Reif W, Dean W, Klose J (1997) Epigenetic inheritance in the mouse. Curr Biol 7:277–280.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Mirazo K, Etxeberria A, Moreno A, Ibá≁ez J (2000) Organisms and their place in biology. Theory Biosci 119:209–233.

    Article  Google Scholar 

  • Sarkar S (1996) Biological information: a skeptical look at some central dogmas of molecular biology. In: Sarkar S (ed) The philosophy and history of molecular biology: New perspectives. Kluwer Academic Press, Dordrecht, pp 187–231.

    Google Scholar 

  • Sarkar S (1998) Genetics and reductionism. Cambridge University Press, Cambridge.

    Google Scholar 

  • Shapiro JA (2002) Genome organization and reorganization in evolution: formatting for computation and function. In: Van SL, Van de Vijver G, De Waele D (eds) From epigenesis to epigenetics: the genome in context, vol 981, Annals of the New York Academy of Sciences, pp 111–134.

    Google Scholar 

  • Stotz K, Griffiths PE, Knight R (2004) How biologists conceptualize genes: an empirical study. Studies in History and Philosophy of Biological and Biomedical Sciences 35(4):647–673.

    Article  Google Scholar 

  • Thieffry D (1998) Forty years under the central dogma. Trends Biochem Sci 23:312–316.

    Article  PubMed  CAS  Google Scholar 

  • Torres JM (1999) On the falsification of the Central Dogma and the De novo synthesis of molecular species. Philos Nat 36(1):1–18.

    Google Scholar 

  • Van de Vijver G, Van Speybroeck L, Vandevyvere W (2003). Reflections on complexity in biological systems: Kant and beyond. Acta Biotheor 51(2):101–140.

    Article  PubMed  Google Scholar 

  • Van Speybroeck L (2000) The organism: a crucial genomic context in molecular epigenetics? Theory in Biosci 119:187–208.

    Article  Google Scholar 

  • Van Speybroeck L (2002) From Epigenesis to Epigenetics: the case of CH Waddington. In: Van SL, Van de Vijver G, De Waele D (eds) From epigenesis to epigenetics: the genome in context, vol 981, Annals of the New York Academy of Sciences, pp 61–82.

    Google Scholar 

  • Van Speybroeck L, Van de Vijver G, De Waele D (2002) Theories in early embryology. Close connections between epigenesis, preformationis, and self-organization. In: Van SL, Van de Vijver G, De Waele D (eds) From Epigenesis to Epigenetics: the genome in context, vol. 981, Annals of the New York Academy of Sciences, pp 7–50.

    Google Scholar 

  • Waddington CH (1947) (1940) Organisers and genes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Waddington CH (1975) The evolution of an evolutionist. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Waters KC (1994) Genes made molecular. Philos Sci 61:163–185.

    Google Scholar 

  • Waters KC (2004) What was classical genetics? Studies in History and Philos Sci 35:783–808.

    Google Scholar 

  • Whitelaw E, Martin DIK (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365.

    Article  PubMed  CAS  Google Scholar 

  • Wu CT, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105; Full text at www.sciencemag.org/cgi/content/full/293/5532/1103/DC1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Van Speybroeck, L., Van De Vijver, G., De Waele, D. (2007). Epi-Geneticization. In: Fagot-Largeault, A., Rahman, S., Torres, J.M. (eds) The Influence of Genetics on Contemporary Thinking. Logic, Epistemology, and The Unity of Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5664-2_8

Download citation

Publish with us

Policies and ethics