Skip to main content

Abstract

A molecule is a collection of atoms kept together by interactions among those atoms. For some purposes it is better to consider the molecule as consisting of the nuclei of its constituent atoms and its electron density distribution. Generally, it is the geometry and symmetry of the arrangement of the atomic nuclei that is considered to be the geometry and symmetry of the molecule itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reproduced by permission from Academic Press.

References

  1. D. W. Thompson, On Growth and Form, Cambridge University Press, 1917.

    Google Scholar 

  2. A comprehensive account of the origins and early history of stereochemistry is given in O. B. Ramsay, Stereochemistry. Heyden, London, 1981.

    Google Scholar 

  3. Kolbe in Ramsay, Stereochemistry, p. 93.

    Google Scholar 

  4. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Third Edition, Cornell University Press, Ithaca, New York, 1960.

    Google Scholar 

  5. I. Hargittai, “Degas Dancers – An Illustration for Rotational Isomers.” J. Chem. Educ. 1983, 60, 94. Full color reproductions of the original are available in editions of Degas’ work. The original of the drawing with the outstretched hands of ther dancer is in the Louvre, Musée de l’Impressionisme in Paris, and of the other in The Hermitage in St. Petersburg.

    Google Scholar 

  6. Hargittai, J. Chem. Educ. 94.

    Google Scholar 

  7. N. F. M. Henry, K. Lonsdale, eds., International Tables for X-ray Crystallography, Vol. I., Symmetry Groups, Kynoch Press, Birmingham, 1969.

    Google Scholar 

  8. J. H. Conway, D. H. Huson, “The Orbifold Notation for Two-Dimensional Groups.” Struct. Chem. 2002, 13, 247–257.

    Article  CAS  Google Scholar 

  9. F. A. Cotton, Chemical Applications of Group Theory, Third Edition, Wiley-Interscience, New York, 1990; M. Orchin, H. H. Jaffe, “Symmetry. Point Groups, and Character Tables; I, Symmetry Operations and Their Importance for Chemical Problems.” J. Chem. Educ. 1970, 47, 372–377.

    Google Scholar 

  10. Ibid.

    Google Scholar 

  11. M. F. Perutz, Proteins and Nucleic Acids: Structure and Function. Elsevier, Amsterdam, 1962, pp. 64 and 66.

    Google Scholar 

  12. See, e.g., I. Hargittai, The DNA Doctor: Candid Conversations with James D. Watson. World Scientific, Singapore, 2007, p. 10.

    Google Scholar 

  13. I. Hargittai, Candid Science III: More Conversations with Famous Chemists. Ed. M. Hargittai. Imperial College Press, London, 2003, “Johann Deisenhofer”, pp. 342–353.

    Google Scholar 

  14. Hargittai, Candid Science III, pp. 349–350.

    Google Scholar 

  15. Hargittai, Candid Science III, pp. 342–353; p. 345.

    Google Scholar 

  16. See, e.g., J. Deisenhofer, H. Michel, “The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas-Viridis.” Science 1989, 245, 1463–1473; M. E. Michel-Beyerle, M. Plato, J. Deisenhofer, H. Michel, M. Bixton, J. Jortner, “Unidirectionality of Charge Separation in Reaction Centers of Photosynthetic Bacteria .” Biochim. Biophys. Acta 1988, 932, 52–70.

    Google Scholar 

  17. S. Keinan, M. Pinsky, M. Plato, J. Edelstein, D. Avnir, “Quantitative Evaluation of the Near-C2 Symmetry of the Bacterial Photosynthetic Reaction Center.” Chem. Phys. Lett. 1998, 298, 43–50.

    Article  CAS  Google Scholar 

  18. A. Domenicano, “Structural Substituent Effects in Benzene Derivatives.” In Accurate Molecular Structures, A. Domenicano and I. Hargittai, eds., Oxford University Press, Oxford, 1992, pp. 437–468; See, also, A. R. Campanelli, A. Domenicano, F. Ramondo, I. Hargittai, “Group Electronegativities from Benzene Ring Deformations: A Quantum Chemical Study.” J. Phys. Chem. A, 2004, 108, 4940–4948.

    Google Scholar 

  19. M. Hargittai, I. Hargittai, The Molecular Geometries of Coordination Compounds in the Vapour Phase, Akadémiai Kiadó, Budapest and Elsevier, Amsterdam and New York, 1977; V. Horváth, A. Kovács, I. Hargittai, “Structural Aspects of Donor–Acceptor Interactions.” J. Phys. Chem. A, 2003, 107, 1197–1202; V. Horváth, I. Hargittai, “Geometrical Changes and Their Energies in the Formation of Donor-Acceptor Complexes.” Struct. Chem. 2004, 15, 233–236.

    Google Scholar 

  20. H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, New York, 1973.

    Google Scholar 

  21. R. J. Ternansky, D. W. Balogh, L. A. Paquette, “Dodecahedrane.” J. Am. Chem. Soc. 1982, 104, 4503–4504.

    Article  CAS  Google Scholar 

  22. H. P. Schultz, “Topological Organic Chemistry: Polyhedranes and Prismanes.” J. Org. Chem. 1965, 30, 1361–1364.

    Article  CAS  Google Scholar 

  23. H. S. M. Coxeter, Regular Polytopes. First Edition, Methuen & Co., London, 1948.

    Google Scholar 

  24. C. H. MacGillavry, Symmetry Aspects of M. C. Escher’s Periodic Drawings, Bohn, Scheltema and Holkema, Utrecht, 1976.

    Google Scholar 

  25. E. L. Muetterties, in Boron Hydride Chemistry, E. L. Muetterties, ed., Academic Press, New York, San Francisco, London, 1975.

    Google Scholar 

  26. V. P. Spiridonov, G. I. Mamaeva, “Study of the Zirconium Borohydride Molecule by Electron Diffraction by Gases.” Zh. Strukt. Khim. 1969, 10, 132–135.

    Google Scholar 

  27. V. Plato, K. Hedberg, “An Electron-Diffraction Investigation of Zirconium Tetraborohydride, Zr(BH4)4.” Inorg. Chem. 1971, 10, 590–594.

    Article  Google Scholar 

  28. Spiridonov, Mamaeva, Zh. Strukt. Khim. 132–135.

    Google Scholar 

  29. Plato, Hedberg, Inorg. Chem. 590–594.

    Google Scholar 

  30. H. W. Kroto, J. R. Heath, S. O’Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene.” Nature 1985, 318, 162–163.

    Article  CAS  Google Scholar 

  31. Science 1990, December 12, 250.

    Google Scholar 

  32. Science 1991, December 20, 254.

    Google Scholar 

  33. D. E. Koshland, Science 1991, 251, 1162. D. E. Koshland, “Molecule of the Year.” Science 1991, 254, 1705–1705.

    Google Scholar 

  34. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano, B. V. Issendorff, “Gas-Phase Production and Photoelectron Spectroscopy of the Smallest Fullerene, C20.” Nature 2000, 407, 60–63.

    Article  CAS  Google Scholar 

  35. Science 1991, December 20, 254.

    Google Scholar 

  36. Muetterties, Boron Hydride Chemistry.

    Google Scholar 

  37. E. Esenturk, J. Fettinger, Y.-F. Lam, B. Eichhorn, “[Pt@Pb12]2–Angew. Chem. Int. Ed. Engl. 2004, 43, 2132–2134.

    Article  CAS  Google Scholar 

  38. R. E. Williams, “Carboranes and Boranes; Polyhedra and Polyhedral Fragments.” Inorg. Chem. 1971, 10, 210–214.

    Article  CAS  Google Scholar 

  39. R. W. Rudolph, “Boranes and Heteroboranes – Paradigm for Electron Requirements of Clusters.” Acc. Chem. Res. 1976, 9, 446–452.

    Article  CAS  Google Scholar 

  40. Williams, Inorg. Chem. 210–214.

    Google Scholar 

  41. Rudolph, Acc. Chem. Res. 446–452.

    Google Scholar 

  42. S. O. Kang, L. G. Sneddon, in Electron Deficient Boron and Carbon Clusters, G. A. Olah, K. Wade, R. E. Williams, eds., Wiley, New York, 1991.

    Google Scholar 

  43. Muetterties, Boron Hydride Chemistry.

    Google Scholar 

  44. Ibid.

    Google Scholar 

  45. L. N. Ferguson, “Alicyclic Chemistry: The Playground for Organic Chemists.” J. Chem. Educ. 1969, 46, 404–412.

    Article  CAS  Google Scholar 

  46. See, e.g., A. Nemirowski, H. P. Reisenauer, P. R. Schreiner, “Tetrahedrane—Dossier of an Unknown.” Chem. Eur. J. 2006, 12, 7411–7420.

    Article  CAS  Google Scholar 

  47. G. Maier, S. Pfriem, U. Schafer, R. Matush, “Small Rings .25. Tetra-tert-butyltetrahedrane.” Angew. Chem. Int. Ed. Engl. 1978, 17, 520–521.

    Article  Google Scholar 

  48. Ibid.

    Google Scholar 

  49. P. E. Eaton, T. J. Cole, “Cubane.” J. Am. Chem. Soc. 1964, 86, 3157–3158. See, also, P. E. Eaton, “Cubanes – Starting Materials for the Chemistry of the 1990s and the New Century.” Angew. Chem. Int. Ed. Engl. 1992, 31, 1421–1436; A. P. Marchand, “Plato’s Solid, Eaton’s Cage: The Cubane Saga.” Chem. Intelligencer 1995, 1(4), 8–17.

    Google Scholar 

  50. Marchand, Chem. Intelligences, p. 10 (Marchand quoting Eaton’s words).

    Google Scholar 

  51. Ibid., p. 11.

    Google Scholar 

  52. Ternansky et al., J. Am. Chem. Soc. 4503–4504.

    Google Scholar 

  53. Schultz, J. Org. Chem. 1361–1364.

    Google Scholar 

  54. R. F. Curl, R. E. Smalley, “Fullerenes.” Sci. Amer. October 1991, p. 32.

    Google Scholar 

  55. T. J. Katz, N. Acton, “Synthesis of Prismane.” J. Am. Chem. Soc. 1973, 95, 2738–2739; V. Ramamurthy, T. J. Katz, “Energy-Storage and Release – Direct and Sensitized Photoreactions of Dewar Benzene and Prismane.” Nouv. J. Chim. 1977, 1, 363–365.

    Google Scholar 

  56. P. E. Eaton, Y. S. Or, S. J. Branca, “Pentaprismane.” J. Am. Chem. Soc. 1981, 103, 2134–2136.

    Article  CAS  Google Scholar 

  57. D. Farcasiu, E. Wiskott, E. Osawa, W. Thielecke, E. M. Engler, J. Slutsky, P. v. R. Schleyer, “Ethanoadamantane. The Most Stable C12H18 Isomer.” J. Am. Chem. Soc. 1974, 96, 4669–4671.

    Article  CAS  Google Scholar 

  58. M. Alonso, J. Poater, M. Solà, “Aromaticity Changes Along the Reaction Coordinate Connecting the Cyclobutadiene Dimmer to Cubane and the Benzene Dimmer to Hexaprismane.” Struct. Chem. 2007, 18, 773–783.

    Article  CAS  Google Scholar 

  59. Williams, Inorg. Chem. 210–214.

    Google Scholar 

  60. Farcasiu et al., J. Am. Chem. Soc. 4669–4671.

    Google Scholar 

  61. L. F. Fieser, “Extensions in the Use of Plastic Tetrahedral Models.” J. Chem. Educ. 1965, 42, 408–412.

    Article  CAS  Google Scholar 

  62. C. A. Cupas, L. Hodakowski, “Iceane.” J. Am. Chem. Soc. 1974, 96, 4668–4669.

    Article  CAS  Google Scholar 

  63. Fieser, J. Chem. Educ. 408–412.

    Google Scholar 

  64. C. Cupas, P. v. R. Schleyer, D. J. Trecker, “Congressane.” J. Am. Chem. Soc. 1965, 87, 917–918; T. M. Gund, E. Osawa, V. Z. Williams, P. v. R. Schleyer, “Diamantane. I. Preparation of Diamantane. Physical and Spectral Properties.” J. Org. Chem. 1974, 39, 2979–2987.

    Google Scholar 

  65. A. Greenberg, J. F. Liebman, Strained Organic Molecules, Academic Press, New York, 1978.

    Google Scholar 

  66. E. Boelema, J. Strating, H. Wynberg, “Spiro[adamantane-2,2’-adamantane].” Tetrahedron Lett. 1972, 1175–1177; W. D. Graham, P. v. R. Schleyer, “Diamond Lattice Hydrocarbons: Spiro[adamantane-2,2’-adamantane].” Tetrahedron Lett. 1972, 1179–1180.

    Google Scholar 

  67. W. D. Graham, P. v. R. Schleyer, E. W. Hagaman, E. Wenkert, “[2]Diadamantane, the First Member of a New Class of Diamondoid Hydrocarbons.” J. Am. Chem. Soc. 1973, 95, 5785–5786.

    Article  CAS  Google Scholar 

  68. Cupas, Schleyer, Trecker, J. Am. Chem. Soc. 917–918; Gund, Osawa, Williams, Schleyer, J. Org. Chem. 2979–2987.

    Google Scholar 

  69. W. Z. Williams, P. v. R. Schleyer, G. J. Gleicher, L. B. Rodewald, “Triamantane.” J. Am. Chem. Soc. 1966, 88, 3862–3863.

    Article  CAS  Google Scholar 

  70. W. Burns, T. R. B. Mitchell, M. A. McKervey, J. J. Rooney, G. Ferguson, P. Roberts, “Gas-Phase Reactions on Platinum. Synthesis and Crystal Structure of Anti-Tetramantane, a Large Diamondoid Fragment.” J. Chem. Soc. Chem. Commun. 1976, 893–895.

    Google Scholar 

  71. M. Hargittai, “The Molecular Geometry of Metal Halides.” Coord. Chem. Rev. 1988, 91, 35–88.

    Article  CAS  Google Scholar 

  72. Ibid.

    Google Scholar 

  73. G. Rauscher, T. Clark, D. Poppinger, P. v. R. Schleyer, “C4Li4, Tetralithiotetrahedrane.” Angew. Chem. Int. Ed. Engl. 1978, 17, 276–278.

    Article  Google Scholar 

  74. Ibid.

    Google Scholar 

  75. A. Haaland, J. E. Nilsson, “Determination of Barriers to Internal Rotation by Electron Diffraction. Ferrocene and Ruthenocene.” Acta Chem. Scand. 1968, 22, 2653–2670.

    Article  CAS  Google Scholar 

  76. I. Hargittai, “The Beginnings of Multiple Metal–Metal Bonds.” I. Hargittai, Candid Science: Conversations with Famous Chemists. Ed. M. Hargittai. Imperial College Press, London, 2000, pp. 246–249.

    Chapter  Google Scholar 

  77. A. S. Kotel’nikova, V. G. Tronev, “Complex Compounds of Bivalent Rhenium.” Zh. Neorg. Khim. 1958, 3, 1008–1027.

    Google Scholar 

  78. F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, J. S. Wood, “Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity.” Science 1964, 145, 1305–1307.

    Article  CAS  Google Scholar 

  79. E. H. Hahn, H. Bohm, D. Ginsburg, “The Synthesis of Paddlanes: Compounds in which Quaternary Bridgehead Carbons are Joined by Four Chains.” Tetrahedron Lett. 1973, 14, 507–510.

    Article  Google Scholar 

  80. M. H. Kelley, M. Fink, “The Molecular Structure of Dimolybdenum Tetraacetate.” J. Chem. Phys. 1982, 76, 1407–1416.

    Article  CAS  Google Scholar 

  81. V. Plato, W. D. Hartford, K. Hedberg, “Electron-Diffraction Investigation of the Molecular Structure of Trifluoramine Oxide, F3NO.” J. Chem. Phys. 1970, 53, 3488–3494.

    Article  CAS  Google Scholar 

  82. Ibid.

    Google Scholar 

  83. L. S. Bartell, “On the Effects of Intramolecular van der Waals Forces.” J. Chem. Phys. 1960, 32, 827–831.

    Article  CAS  Google Scholar 

  84. L. S. Bartell, “Molecular Geometry: Bonded Versus Nonbonded Interactions.” J. Chem. Educ. 1968, 45, 754–767.

    Article  CAS  Google Scholar 

  85. Ibid.

    Google Scholar 

  86. I. Hargittai, The Structure of Volatile Sulphur Compounds, Reidel Publ. Co., Dordrecht, Boston, Lancaster, 1985.

    Google Scholar 

  87. Ibid.

    Google Scholar 

  88. R. J. Gillespie, I. Hargittai, The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston, 1991.

    Google Scholar 

  89. Ibid.

    Google Scholar 

  90. Ibid.

    Google Scholar 

  91. Ibid.

    Google Scholar 

  92. A. Schmiedekamp, D. W. J. Cruickshank, S. Skaarup, P. Pulay, I. Hargittai, J. E. Boggs, “Investigation of the Basis of the Valence Shell Electron Pair Repulsion Model by ab Initio Calculation of Geometry Variations in a Series of Tetrahedral and Related Molecules.” J. Am. Chem. Soc. 1979, 101, 2002–2010.

    Article  CAS  Google Scholar 

  93. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (New Series). Vols. II/7, II/15, II/21: Structure Data of Free Polyatomic Molecules, Springer Verlag Berlin, Heidelberg, New York, 1976, 1987, 1992.

    Google Scholar 

  94. Schmiedekamp et al., J. Am. Chem. Soc. 2002–2010.

    Google Scholar 

  95. J. Brunvoll, O. Exner, I. Hargittai, “Geometry and Conformation of Dimethyl Sulfate as Investigated by Electron-Diffraction and Dipolometry.” J. Mol. Struct. 1981, 73, 99–104.

    Article  CAS  Google Scholar 

  96. Ibid.

    Google Scholar 

  97. Schmiedekamp et al., J. Am. Chem. Soc. 2002–2010.

    Google Scholar 

  98. Ibid.

    Google Scholar 

  99. C. Macho, R. Minkwitz, J. Rohmann, B. Steger, V. Wölfel, H. Oberhammer, “The Chlorofluorophosphoranes PCl n F5–n (n = 1–4). Gas-Phase Structures and Vibrational Analyses.” Inorg. Chem. 1986, 25, 2828–2835.

    Article  CAS  Google Scholar 

  100. I. D. Brown, “Topology and Chemistry.” Struct. Chem. 2002, 13, 339–355.

    Article  CAS  Google Scholar 

  101. R. Hoffmann, B. F. Beier, E. L. Muetterties, A. Rossi, “7-Coordination – Molecular-Orbital Exploration of Structure, Stereochemistry, and Reaction Dynamics.” Inorg. Chem. 1977, 16, 511–522.

    Article  CAS  Google Scholar 

  102. Gillespie, Hargittai, The VSEPR Model of Molecular Geometry.

    Google Scholar 

  103. See, e.g., W. B. Jensen, “Abegg, Lewis, Langmuir, and the Octet Rule.” J. Chem. Educ. 1984, 61, 191–200.

    Article  CAS  Google Scholar 

  104. G. N. Lewis, “The Atom and the Molecule.” J. Am. Chem. Soc. 1916, 38, 762–785; G. N. Lewis, Valence and the Structure of Atoms and Molecules, Chemical Catalog Co., New York, 1923.

    Google Scholar 

  105. Ibid.

    Google Scholar 

  106. N. V. Sidgwick, H. M. Powell, “Bakerian Lecture. Stereochemical Types and Valency Groups.” Proc. R. Soc. London, Ser A 1940, 176, 153–180.

    Google Scholar 

  107. R. J. Gillespie, R. S. Nyholm, “Inorganic Stereochemistry.” Quart. Rev. Chem. Soc. 1957, 11, 339–380.

    Article  CAS  Google Scholar 

  108. R. F. W. Bader, P. J. MacDougall, C. D. H. Lau, “Bonded and Nonbonded Charge Concentrations and Their Relation to Molecular-Geometry and Reactivity.” J. Am. Chem. Soc. 1984, 106, 1594–1605; R. F. W. Bader, Atoms and Molecules: A Quantum Theory, Oxford University Press, Oxford, U. K., 1990.

    Google Scholar 

  109. See, e.g., R. S. Berry, in Quantum Dynamics of Molecules. The New Experimental Challenge to Theorists, R. G. Wooley, ed., Plenum Press, New York and London, 1980.

    Google Scholar 

  110. See, e.g., M. Hargittai, I. Hargittai, “Linear, bent, and quasilinear molecules.” In Structures and Conformations of Non-rigid Molecules, J. Laane, M. Dakkouri, B. van der Veken, and H. Oberhammer, eds., NATO ASI Series C.: Mathematical and Physical Sciences, Vol. 410, pp. 465–489, Kluwer Academic Publishers, Dordrecht, Boston, London, 1993.

    Google Scholar 

  111. Ibid.

    Google Scholar 

  112. W. v. E. Doering, W. R. Roth, “A Rapidly Reversible Degenerate Cope Rearrangement. Bicyclo[5.1.0]octa-2,5-diene. A rapidly reversible degenerate Cope rearrangement.” Tetrahedron 1963, 19, 715–737 Tetrahedron 1963, 19, 715–737; G. Schroeder, “Preparation and Properties of Tricyclo[3,3,2,04,6]deca-2,7,9-triene (Bullvalene).” Angew. Chem. Int. Ed. Engl. 1963, 2, 481–482; M. Saunders, “Measurement of the Rate of Rearrangement of Bullvalene.” Tetrahedron Lett. 1963, 4, 1699–1702.

    Google Scholar 

  113. Ibid.

    Google Scholar 

  114. J. S. McKennis, L. Brener, J. S. Ward, R. Pettit, “The Degenerate Cope Rearrangements in Hypostrophene, A Novel C10H10 Hydrocarbon [37].” J. Am. Chem. Soc. 1971, 93, 4957–4958.

    Article  Google Scholar 

  115. Ibid.

    Google Scholar 

  116. R. S. Berry, “Correlation of Rates of Intramolecular Tunneling Processes, with Application to Some Group V Compounds.” J. Chem. Phys. 1960, 32, 933–938.

    Article  CAS  Google Scholar 

  117. G. M. Whitesides, H. L. Mitchell, “Pseudorotation in (CH3)2NPF4.” J. Am. Chem. Soc. 1969, 91, 5384–5386.

    Article  CAS  Google Scholar 

  118. L. S. Bartell, M. J. Rothman, A. Gavezzotti, “Pseudopotential SCF-MO Studies of Hypervalent Compounds .4. Structure, Vibrational Assignments, and Intramolecular Forces in IF7.” J. Chem. Phys. 1982, 76, 4136–4143 and references therein; K. O. Christe, E. C. Curtis, D. A. Dixon, “On the Problem of Heptacoordination – Vibrational-Spectra, Structure, and Fluxionality of Iodine Heptafluoride.” J. Am. Chem. Soc. 1993, 115, 1520–1526.

    Google Scholar 

  119. E. L. Muetterties, W. H. Knoth, Polyhedral Boranes, Marcel Dekker, New York, 1968.

    Google Scholar 

  120. W. N. Lipscomb, “Framework Rearrangement in Boranes and Carboranes.” Science 1966, 153, 373–378.

    Google Scholar 

  121. Ibid. and see also, D. M. P. Mingos, D. J. Wales, in Electron Deficient Boron and Carbon Clusters, G. A. Olah, K. Wade, R. E. Williams, eds., Wiley, New York, 1991; D. J. Wales, “Rearrangement Mechanisms of B12H12 2– and C2B10H12.” J. Am. Chem. Soc. 1993, 115, 1557–1567.

    Google Scholar 

  122. Lipscomb, Science, 373–378.

    Google Scholar 

  123. R. K. Bohn, M. D. Bohn, “Molecular Structures of 1,2-, 1,7-, and 1,12-Dicarba-closo-dodecaborane(12), B10C2H12.” Inorg. Chem. 1971, 10, 350–355.

    Article  CAS  Google Scholar 

  124. B. F. G. Johnson, R. E. Benfield, “Structures of Binary Carbonyls and Related Compounds. 1. New Approach to Fluxional Behavior.” J. Chem. Soc. Dalton Trans. 1978, 1554–1568.

    Google Scholar 

  125. B. E. Hanson, M. J. Sullivan, R. J. Davis, “Direct Evidence for Bridge Terminal Carbonyl Exchange in Solid Dicobalt Octacarbonyl by Variable-Temperature Magic Angle Spinning C-13 NMR-Spectroscopy.” J. Am. Chem. Soc. 1984, 106, 251–253.

    Google Scholar 

  126. R. E. Benfield, B. F. G. Johnson, “The Structures and Fluxional Behaviour of the Binary Carbonyls – A New Approach. 2. Cluster Carbonyls M m (CO) n (n = 12,13,14,15, or 16).” J. Chem. Soc. Dalton Trans. 1980, 1743–1767.

    Google Scholar 

  127. Johnson, Benfield, J. Chem. Soc. Dalton Trans. 1554–1568.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdolna Hargittai .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hargittai, M., Hargittai, I. (2009). Molecular Shape and Geometry. In: Symmetry through the Eyes of a Chemist. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5628-4_3

Download citation

Publish with us

Policies and ethics