Skip to main content

Abstract

Human impact on nitrogen cycling, in particular the introduction of reactive nitrogen in terrestrial and aquatic ecosystems, can be examined at multiple scales, from the global impact on atmospheric chemistry to the impact of human activities on soil organic matter and fertility at the scale of square meters. Nevertheless, anthropogenic loading of nitrogen cycling in natural and managed ecosystems can be seen most directly at the regional scale, where concentrated human activity results in disruption of the nitrogen balance, with consequences for biogeochemical cycling and their interactions. Differences in land-use and agricultural practices between North and South America, and the importance of economic drivers that determine the fate of new reactive nitrogen demonstrate a contrasting picture of human impact on N cycling when the consequences are considered at the global vs. the regional scale. In particular, in the Pampa region of Argentina, the central agricultural zone of the country, the expansion of soybean cultivation in the last 20 years and the use of synthetic fertilizers have resulted in an influx of reactive nitrogen into these systems, with unexpected consequences for the nitrogen balance. A mass balance of nitrogen for soybean demonstrates that increased nitrogen inputs from biological fixation do not compensate for losses due to seed export, such that most areas under soybean cultivation are currently experiencing a substantive net loss of nitrogen. In addition, other crops that are currently being fertilized still show a net loss of nitrogen also due to the effect of primary exports from these agroecosystems. These simple models demonstrate that socioeconomic factors in large part drive the contrasting effects of anthropogenic impact on nitrogen cycling at global vs. regional scales. The future impact on nitrogen cycling in the Americas requires an integration of both ecological factors and socioeconomic drivers that will ultimately determine human disruption of the nitrogen cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmaras R.R., Nelson W.W. and Voorhees W.B. 1975. Soybean and corn rooting in southwestern Minnesota. 2. Root distributions and related water inflow. Soil Sci. Soc. Am. Proc. 38: 771–777.

    Article  Google Scholar 

  • Álvarez R., Lemcoff J.H. and Merzari A.H. 1995. Balance de nitrógeno en un suelo cultivado con soja. Ciencia del Suelo 13: 38–40.

    Google Scholar 

  • Alves B.J.R., Boddey R.M. and Urquiaga S. 2003. The success of BNF in soybean in Brazil. Plant Soil 252: 1–9.

    Article  CAS  Google Scholar 

  • Andrade F.H. 1995. Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, Argentina. Field Crops Res. 41: 1–12.

    Article  Google Scholar 

  • Austin A.T., Howarth R.W., Baron J.S., Chapin F.S. III, Christensen T.R., Holland E.A., Ivanov M.V., Lien A.Y., Martinelli L.A., Melillo J.M. and Shang C. 2003. Human disruption of element interactions: drivers, consequences and trends for the 21st century. In: Melillo J.M., Field C.B. and Moldan B. (eds.), Interactions of Major Biogeochemical Cycles: Global Change and Human Impacts, Island Press, Washington DC, pp. 15–46.

    Google Scholar 

  • Baisre J.A. 2006. Assessment of nitrogen flows into the Cuban landscape. Biogeochemistry.

    Google Scholar 

  • Berman J.M., Arrigo K.R. and Matson P.A. 2005. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434: 211–214.

    Article  CAS  Google Scholar 

  • Cassman K.G. 1999. Ecological intensification of cereal production systems: yield potential, soil quality and precision agriculture. Proc. Natl. Acad. Sci. 96: 5952–5959.

    Article  PubMed  CAS  Google Scholar 

  • Conde Prat M. and De Simone C. 2004. Insumos Agrícolas: Fertilizantes y Terapéuticos. In Foro de Perspectivas Agropecuarias 2004. Edited by S. d. E. A. Área de Análisis Económico de la Dirección de Economía Agropecuaria. Buenos Aires.

    Google Scholar 

  • Dardanelli J.L., Suero E.E., Andrade F.H. and Andriani J.M. 1991. Water deficits during reproductive growth of soybeans. 2. Water use and water deficiency indicators [water stress, water use efficiency, indicator parameter]. Agronomie 11: 747–756.

    Google Scholar 

  • Di Ciocco C., Álvarez R., Andrada Y. and Momo F. 2004. Balance de nitrógeno en un cultivo de soja de segunda en La Pampa Ondulada. Ciencia del Suelo 22: 48–51.

    Google Scholar 

  • Diaz Zorita M. and Duarte G. 2004. Manual práctica para la producción de soja. Hemisferio Sur, Montevideo.

    Google Scholar 

  • Díaz-Zorita M., Duarte G.A. and Grove J.H. 2002. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Till. Res. 65: 1–18.

    Article  Google Scholar 

  • Drinkwater L.E., Wagoner P. and Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396: 262–265.

    Article  CAS  Google Scholar 

  • FAO 2002. Food and Agricultural Organization. FAOSTAT database collection., Available at http://www.apps.fao.org.

    Google Scholar 

  • FAO 2004. Uso de fertilizantes por cultivo en Argentina., 50. Food and Agricultural Organization, Roma.

    Google Scholar 

  • Galloway J., Dentener F., Capone D., Boyer E., Howarth R., Seitzinger S., Asner G., Cleveland C., Green P., Holland E., Karl D., Michaels A., Porter J., Townsend A. and Vorösmarty C. 2004. Nitrogen cycles: past present and future. Biogeochemistry 70: 153–226.

    Article  CAS  Google Scholar 

  • Galloway J.N. and Cowling E.B. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31: 64–71.

    PubMed  Google Scholar 

  • Gan Y., Stulen I., Posthumus F., van Keulen H. and Pieter J.C. 2002. Effects of N management on growth, N2 fixation and yield of soybean. Nutr. Cycl. Agroecosyst. 62: 163–174.

    Article  CAS  Google Scholar 

  • García F.O., Oliverio G., Segovia F. and López G. 2005. Fertilizers to sustain production of 100 million metric tons of grain. Better Crops 89: 33–35.

    Google Scholar 

  • García-Perchác F., Ernst O., Siri-Prieto G. and Terra J.A. 2004. Integrating no-till into croppasture rotations in Uruguay. Soil Till. Res. 77: 1–13.

    Article  Google Scholar 

  • Guerschman J.P. and Paruelo J.M. 2005. Agricultural impacts on ecosystem functioning in temperate areas of North and South America. Global Planet. Change 47: 170–180.

    Article  Google Scholar 

  • Hall A.J., Rebella C., Ghersa C.M. and Culot J.P. 1992. Field-crop systems of the Pampas. In: Person C.J. (ed.), Field Crop Ecosystems, Ecosystems of the World, Elsevier, Amsterdam.

    Google Scholar 

  • Howarth R.W., Billen G., Swaney D., Townsend A., Jaworski N., Lajtha K., Downing J.A., Elmgren R., Caraco N., Jordan T., Berendse F., Freney J., Kudeyarov V., Murdoch P. and Zhao-Liang Z. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35: 75–139.

    Article  CAS  Google Scholar 

  • Howarth R.W., Walker D. and Sharpley A. 2002. Sources of nitrogen pollution to coastal waters of the United States. Estuaries 25: 656–676.

    Article  CAS  Google Scholar 

  • Hudak C.M. and Patterson R.P. 1995. Vegetative growth analysis of a drought-resistant soybean plan introduction. Crop Sci. 35: 464–471.

    Article  Google Scholar 

  • Imhoff M.L., Bounoua L., Ricketts T., Loucks C., Harriss R. and Lawrence W.T. 2004. Global patterns in human consumption of net primary production. Nature 429: 870–873.

    Article  PubMed  CAS  Google Scholar 

  • Martinelli L.A., Howarth R.W., Cuevas E., Filoso S., Austin A.T., Donoso L., Huzsar V., Keeney D., Lara L.L., Llerena C., McIssac G., Medina E., Ortiz-Zayas J., Scavia D., Schindler D.W., Soto D. and Townsend A. 2006. Sources of reactive nitrogen affecting ecosystems in in Latin America and the Caribbean: current trends and future perspectives. Biogeochemistry, in press.

    Google Scholar 

  • Maskey S.L., Bhattarai S., Peoples M.B. and Herridge D.F. 2001. On-farm measurements of nitrogen fixation by winter and summer legumes in the Hill and Terai regions of Nepal. Field Crops Res. 70: 209–221.

    Article  Google Scholar 

  • Matson P.A., Parton W.J., Power A.G. and Swift M.J. 1997. Agricultural intensification and ecosystem properties. Science 277: 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Oliverio G., Segovia F. and López G.M. 2004. Fertilizantes para una Argentina de 100 millones de toneladas., http://www.producirconservando.org.ar/docs/. Buenos Aires: Fundación Producir Conservando.

    Google Scholar 

  • Peoples M.B. 1995. Enhancing legume N2 fixation through plant and soil managment. Plant Soil 174: 83–101.

    Article  CAS  Google Scholar 

  • Peoples M.B., Gault R.R., Lean B., Sykes J.D. and Brockwell J. 1995. Nitrogen fixation by soybean in commercial irrigated crops of Central and Southern New South Wales. Soil Biol. Biochem. 27: 553–561.

    Article  CAS  Google Scholar 

  • Rabalais N.N., Turner R.E., Justic D., Dortch Q., Wiseman W.J. and Sen Gupta B.K. 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19: 386–407.

    Article  CAS  Google Scholar 

  • Rojstaczer S., Sterling S.M. and Moore N.J. 2001. Human appropriation of photosynthesis products. Science 294: 2549–2552.

    Article  PubMed  CAS  Google Scholar 

  • Sadras V.O. and Calvino P.A. 2001. Quantification of grain yield response to soil depth in soybean, maize, sunflower, and wheat. Agron. J. 93: 577–583.

    Article  Google Scholar 

  • SAGPyA (2005). Secretaría de Agricultura Ganadería Pesca y Alimentos de la Nación Argentina. Estadísticas Agropecuarias., Available at http://www.sagpya.gov.ar.

    Google Scholar 

  • Schapaugh W.T. Jr. and Wilcox J.R. 1980. Relationships between harvest indices and other plant characteristics in soybeans. Crop Sci. 20: 529–533.

    Article  Google Scholar 

  • Scheiner J.D., Alvarez Renzi D.F., Lavado R.S. and Torri S.I. 1997. Efecto de la fertilización fosforada y nitrogenada en soja en el centro-oeste bonaerense (Argentina). Ciencia del Suelo 15: 36–38.

    Google Scholar 

  • Schindler D.W., Dillon P.J. and Schreier H. 2006. Anthropogenic sources of nitrogen in Canada. Biogeochemistry.

    Google Scholar 

  • Singh A., Carsky R.J., Lucas E.O. and Dashiell K. 2003. Soil N balance as affected by soybean maturity class in the Guinea savanna. Agricult. Ecosyst. Environ. 100: 231–240.

    Article  CAS  Google Scholar 

  • Smil V. 2001. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Tilman D., Cassman K.G., Matson P.A., Naylor R. and Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671–677.

    Article  PubMed  CAS  Google Scholar 

  • Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D. and Swackhamer D. 2001. Forecasting agriculturally driven global environmental change. Science 292: 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Trigo E.J. and Cap E.J. 2003. The impact of the introduction of transgenic crops in Argentinean agriculture. AgBioForum 6: 87–94.

    Google Scholar 

  • Unkovich M.J. and Pate J.S. 2000. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res. 65: 211–228.

    Article  Google Scholar 

  • Viglizzo E.F., Lértora F., Pordomingo A.J., Bernardos J.N., Roberto Z.E. and Del Valle H. 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agricult. Ecosyst. Environ. 83: 65–81.

    Article  Google Scholar 

  • Viglizzo E.F., Roberto Z.E., Lértora F., López Gaya E. and Bernardos J. 1997a. Climate and landuse change in field-crop ecosystems of Argentina. Agricult. Ecosyst. Environ. 66: 61–70.

    Article  Google Scholar 

  • Viglizzo E.F., Roberto Z.E., Lértora F., López Gaya E. and Bernardos J. 1997b. Climate variability and agroecological change in the Central Pampas of Argentina. Agricult. Ecosyst. Environ. 55: 7–16.

    Article  Google Scholar 

  • Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H. and Tilman D. 1997a. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. App. 7: 737–750.

    Google Scholar 

  • Vitousek P.M., Mooney H.A., Lubchenco J. and Melillo J.M. 1997b. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Vitousek P.M., Ehrlich P.R., Ehrlich A.H. and Matson P.A. 1986. Human appropriation of the products of photosynthesis. BioScience 36: 368–373.

    Article  Google Scholar 

  • Weilenmann de Tau M.E. and Lúquez J. 2000. Variations for Biomass, Economic Yield and Harvest Index among Soybean Cultivars of Maturity Groups III and IV in Argentina. Soybean Genetics Newsletter 27, online journal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Austin, A.T., Piñeiro, G., Gonzalez-Polo, M. (2006). More is less: agricultural impacts on the N cycle in Argentina. In: Martinelli, L.A., Howarth, R.W. (eds) Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5517-1_3

Download citation

Publish with us

Policies and ethics