Skip to main content

VISCOSITIES OF SOLUTIONS AND MIXTURES

  • Chapter
Viscosity of Liquids

Abstract

In industrial practice, viscosities of solutions (meaning homogeneous products of dissolution of solids or gases in liquids) and fluid mixtures (meaning homogeneous mixtures resulting out of mixing of two or more fluids) are often needed for the design of the different unit operations and processes involved. While it will be ideal to measure the viscosities of the solutions and mixtures at the conditions of interest, constraints on the availability of time, facilities and expertise, often force the designer to use an estimated value. The objective of this chapter is to outline the methods available in the literature for the estimation of the viscosity of solutions and mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. H. Falkanhagen, The quantitative limiting law for the viscosity of strong binary electrolytes, Physik. Z. 32, 745–764 (1931).

    Google Scholar 

  2. G. Jones and M. Dole, Viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, J. Am. Chem. Soc. 51, 2950–2964 (1929).

    Google Scholar 

  3. L. Onsager and R. M. Fuoss, Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes, J. Phys. Chem. 36, 2689–2778 (1932).

    Google Scholar 

  4. M. Kaminsky, The concentration and temperature dependence of the viscosity of aqueous solutions of strong electrolytes. III. KCl, K2SO4, MgCl2, BeSO4, and MgSO4 solutions, Z. Physik. Chem. Neue Floge 12, 206–231 (1957).

    Google Scholar 

  5. D. Q. Kern, Process Heat Transfer, McGraw Hill, New York (1950).

    Google Scholar 

  6. D. S. Davis, How to correlate viscosity data, Brit. Chem. Eng. 3, 210 (1958).

    Google Scholar 

  7. J. Cornelissen and H. L. Waterman, The viscosity temperature relationship of liquids Chem. Eng. Sci. 4(5), 238–246 (1955).

    Google Scholar 

  8. A. B. Zdanovskii, The laws of viscosity changes when two liquids are mixed, Zhurn Fiz. Khim. 29, 209–218 (1955).

    Google Scholar 

  9. W. D. Monnery, W. Y. Svrcek, and A. K. Mehrotra, Viscosity: a critical review of practical predictive and correlative methods, Can. J. Chem. Eng. 73(1), 3–40 (1995).

    Google Scholar 

  10. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The Properties of Gases and Liquids, 6th Ed., Mc Graw Hill, New York (2001).

    Google Scholar 

  11. A. K. Mehrotra, W. D. Monnery, and W. Y. Svrcek, A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures, Fl. Ph. Equlib. 117 (1–2), 344–355 (1996).

    Google Scholar 

  12. J. B. Irving, Viscosity of Binary Liquid Mixtures: A Survey of Mixture Equations, National Engineering Laboratory, Report No. 630, East Kilbride, Scotland, England (1977).

    Google Scholar 

  13. J. B. Irving, Viscosity of Binary Liquid Mixtures: The Effectiveness of Mixture Equations, National Engineering Laboratory, Report No. 631, East Kilbridge, Scotland, England (1977).

    Google Scholar 

  14. K. Stefan and T. Heckenberger, Thermal Conductivity and Viscosity of Fluid Mixtures, Chemistry Data Series, Vol. X, Part 1, DECHEMA, Frankfurt (1988).

    Google Scholar 

  15. S. Kouris and C. Panayiotou, Dynamic viscosity of mixtures of benzene, ethanol, and nheptane at 298.15 K, J. Chem. Eng. Data, 34(2), 200–203 (1989).

    Google Scholar 

  16. A. Aucejo, M.C. Burget, R. Munoz, and J.L. Merques, Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K, J. Chem. Eng. Data, 40(1), 141–147 (1995).

    Google Scholar 

  17. A. Kumagai and A. Takahashi, Viscosity and density of liquid mixtures of n-alkanes with squalane, Int. J. Thermophys. 16(3), 773–779 (1995).

    Google Scholar 

  18. J. Wu, A. Shan and A. F. A. Asfour, Viscometric properties of multicomponent liquid n-alkane systems, Fl. Ph. Equlib. 143(1–2), 263–274 (1998).

    Google Scholar 

  19. C. R. Wilke, A Viscosity Equation for Gas Mixtures, J. Chem. Phys. 18(4), 517–519 (1950).

    Google Scholar 

  20. F. Herning and L. Zipperer, Calculation of the viscosity of technical gas mixtures from the viscosity of the individual gases, GWF, das Gas-und Wasserfach 79, 49–54, 69–73 (1936).

    Google Scholar 

  21. D. Reichenberg, The Viscosities of Gas Mixtures at Moderate Pressures, NPL Report No. 29, National Laboratory, Teddington, England (1974).

    Google Scholar 

  22. D. Reichenberg, New Simple Methods for Estimation of Viscosities of Gas Mixtures at Moderate Pressures, NEL Report No. 53, East Kilbridge, Glasgow, Scotland (1977).

    Google Scholar 

  23. D. Reichenberg, Paper Presented at -Symposium on Transport Properties of Fluids and Mixtures, National Engineering Laboratory, East Kilbridge, Glasgow, Scotland (1979).

    Google Scholar 

  24. K. Lucas, Review of Present Status of Transport Properties Prediction, Phase Equilibria and Fluid Properties in Chemical Industry, DECHEMA (1980).

    Google Scholar 

  25. K. Lucas, V. D. I. Warmeatlas, and D. A. Abschnitt: Berischungs methoden fur Stoffeigenschoffen Deuscher Ingenieure, Dusseldorf (1984).

    Google Scholar 

  26. T. H. Chung, L. L. Lee, and K. E. Starling, Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity, Ind. Eng. Chem. Fundam. 23(1), 8–13 (1984).

    Google Scholar 

  27. T. H. Chung, M. Ajlan, L. L. Lee, and K. E. Starling, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res. 27 (4), 671–679 (1988).

    Google Scholar 

  28. D. E. Dean and L. I. Stiel, The viscosity of nonpolar gas mixtures at moderate and high pressures, AIChE J. 11(3), 526–532 (1965).

    Google Scholar 

  29. L. I. Stiel and G. Thodos, The viscosity of nonpolar gases at normal pressures, AIChE J. 7 (4), 611–615 (1961).

    Google Scholar 

  30. R. S. Brokaw, Predicting Transport Properties of Dilute Gases, Ind. Eng. Chem. Proc. Des. Dev. 8(2), 240–253 (1959).

    Google Scholar 

  31. J. M. Hellemans, J. Kestin, and S. T. Ro, Viscosity of oxygen and of some of its mixtures with other gases, Physica (Amsterdam) 65(2), 362–375 (1973).

    Google Scholar 

  32. J. Kestin, H. E. Khalifa, and W. A. Wakcham, The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases, Physica A: Statistical Mechanics and its Applications, 90(2), 215–228 (1978).

    Google Scholar 

  33. E. Vogel, The viscosity of the binary vapor mixtures benzene-toluene and benzene-pxylene and its initial density dependence, Fl. Ph. Equilib. 88, 277–289 (1993).

    Google Scholar 

  34. S. K. Oh and S. W. Campbell, A group contribution model for thermodynamic and transport properties of dilute gases, Fl. Ph. Equilib. 129(1–2), 69–88 (1997).

    Google Scholar 

  35. T. R. Galloway and B. H. Sage, Prediction of the transport properties of paraffin hydrocarbons, Chem. Eng. Sci. 22(7), 979–995 (1967).

    Google Scholar 

  36. H. van Houten and B. I. M. Ten Bosch, Kinetic theory for the volume viscosity in binary mixtures of polyatomic and noble gases, Physica A: Statistical Mechanics and its Applications, 128(1–2), 371–376 (1984).

    Google Scholar 

  37. G. B. Clark and F. R. W. McCourt, Accurate calculation of diffusion and shear viscosity coefficients for H2-H mixtures, Chem. Phys. Lett. 236(3), 229–234 (1995).

    Google Scholar 

  38. R. Di Pippo, J. R. Dorfaman, J. Kestin, H. E. Khalifa, and E. A. Mason, Composition dependence of the viscosity of dense gas mixtures, Physica A: Statistical Mechanics and its Applications, 86(2), 205–223 (1977).

    Google Scholar 

  39. J. Kestin, O. Korfali, J. V. Sengers, and B. Parsi, Density dependence and composition dependence of the viscosity of neon-helium and neon-argon mixtures, Physica A: Statistical Mechanics and its Applications, 106(3), 415–442 (1981).

    Google Scholar 

  40. S. E. Quinones-Cisneros, C. K. Zedberg-Mikkelsen, and E.H. Stenby, The friction theory (f-theory) for viscosity modeling, Fl. Ph. Equilib. 169(2), 249–276 (2000).

    Google Scholar 

  41. F. Audonnet and A. A. H. Padua, Viscosity and density of mixtures of methane and ndecane from 298 to 393 K and up to 75 MPa, Fl. Ph. Equilib. 216(2), 235–244 (2004).

    Google Scholar 

  42. M. J. Assael, J. H. Dymond, M. Papadaki and P. M. Patterson, Correlation and prediction of dense fluid transport coefficients. III. n-alkane mixtures, Int. J. Thermophys. 13(4), 659–669 (1992).

    Google Scholar 

  43. J. H. Dymond, and M. J. Assael: Transport Properties of Fluids:Their Correlation, Prediction and Estimation (Ed. J. Millat, J. H. Dymond and C. S. Nieto de Castro) IUPAC, Cambridge (1996).

    Google Scholar 

  44. A. M. Elsharkawy, Efficient methods for calculations of compressibility, density and viscosity of natural gases, Fl. Ph. Equilib. 218(1), 1–13 (2004).

    Google Scholar 

  45. A. L. Lee and B. E. Eakin, Viscosity of Methane-n-Decane Mixtures, J. Chem. Eng. Data, 11(3), 281–287 (1966).

    Google Scholar 

  46. K. Lucas, Pressure dependence of the viscosity of liquids -a simple estimate, Chem. Ing. Tech. 53(12), 959–960 (1981).

    Google Scholar 

  47. J. Millat, J. H. Dymond, and C. S. Nieto de Castro: Transport Properties of Fluids: Their Correlation, Prediction and Estimation, IUPAC, Cambridge (1966).

    Google Scholar 

  48. M. E. Yener, P. Kashulines, S. S. H. Rizvi, and P. Harriott, Viscosity measurement and modeling of lipid-supercritical carbon dioxide mixtures, J. Supercritical Fluids, 11(3), 151–162 (1998).

    Google Scholar 

  49. M. J. Tham and K. E. Gubbins, Correspondence Principle for Transport Properties of Dense Fluids. Nonpolar Polyatomic Fluids, Ind. Eng. Chem. Fundam. 9(1), 63–70 (1970).

    Google Scholar 

  50. P. L. Christensen and A. Fredenslund, A corresponding states model for the thermal conductivity of gases and liquids, Chem. Eng. Sci. 35(4), 871–875 (1980).

    Google Scholar 

  51. K. C. Mo and K. E. Gubbins, Conformal solution theory for viscosity and thermal conductivity of mixtures, Mol. Phys. 31(3), 825–847 (1976).

    Google Scholar 

  52. K. S. Pedersen, A. Fredenslund, P.L. Christensen, and P. Thomassen, Viscosity of crude oils, Chem. Eng. Sci. 39(6), 1011–1016 (1984).

    Google Scholar 

  53. K. S. Pedersen and A. Fredenslund, An improved corresponding states model for the prediction of oil and gas viscosities and thermal conductivities, Chem. Eng. Sci. 42(1), 182–186 (1986).

    Google Scholar 

  54. H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, Equations for the viscosity and thermal conductivity coefficients of methane, Cryogenics, 15(7), 413–417 (1975).

    Google Scholar 

  55. J. F. Ely and H. J. M. Hanley, Prediction of transport properties. 1. Viscosity of fluids and mixtures, Ind. Eng. Chem. Fundam. 20(4), 323–332 (1981).

    Google Scholar 

  56. D. S. H. Wong, S. I. Sandler, and A. S. Teja, Vapor-liquid equilibrium calculations by use of generalized corresponding states principle. 1. New mixing rules, Ind. Eng. Chem. Fundam. 23(1), 38–44 (1984).

    Google Scholar 

  57. J. Wu and A. F. A. Asfour, Viscometric properties of n-alkane liquid mixtures, Fl. Ph. Equilib. 76, 283–294 (1992).

    Google Scholar 

  58. K. Asberg-Pattersen, K. Knudsen, and A. Fredenslund, Prediction of viscosities of hydrocarbon mixtures, Fl. Ph. Equilib. 70(2–3), 293–308 (1991).

    Google Scholar 

  59. A. S. Lawal. Prediction of vapor and liquid viscosities from the Lawal-Lake-Silberg equation of state, SPE/DOE paper 14926 (1986).

    Google Scholar 

  60. W. Sheng and B. C. Y. Lu, Calculation of shear viscosity of mixtures by means of an equation of state, Adv. Cryo. Eng. 35(Pt. B), 1533–1540 (1990).

    Google Scholar 

  61. D. Y. Peng and D. B. Robinson, A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976).

    MATH  Google Scholar 

  62. J. Palyvos, K. D. Luks, I.L. McLaughlin, and H. T. Davis, Kinetic Theory of Dense-Fluid Mixtures. IV. Square-Well Model Computations, J. Chem. Phys. 47(6), 2082–2089 (1967).

    Google Scholar 

  63. M.J. Assael, J. H. Dymond, and P. M. Patterson, Correlation and prediction of dense fluid transport coefficients. V. Aromatic hydrocarbons, Int. J. Thermophys. 13(5), 895–905 (1992).

    Google Scholar 

  64. Y. S. Touloukian, S. C. Saxena, and P. Hestermaus, Thermo physical properties of matter, PRS Data Series.Vol.II, Viscosity, Purdue Research Foundation (1975).

    Google Scholar 

  65. K. Stefan and K. D. Lucas, Viscosity of Dense Fluids. Plenum, New York (1979).

    Google Scholar 

  66. D. S. Viswanath and G. Natarajan, Data Book on the Viscosity of Liquids. Hemisphere, New York (1989).

    Google Scholar 

  67. A. K. Mehrotra, W. D. Monnery, and W. Y. Svrcek, A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures, Fl. Ph. Equilib. 117 (1–2), 344–355 (1996).

    Google Scholar 

  68. N. Jhunjhunwala, J. P. Boon, H. L. Frisch, and J. L. Lebowitz, Shear viscosity of simple fluid mixtures, Physica (Amsterdam) 41(3), 536–540 (1969).

    Google Scholar 

  69. P. P. Singh and C. P. Sinha, Application of significant liquid structure theory to the mixture viscosity of apolar-apolar and polar-apolar binary liquid systems, Ind. J. Chem. Section A: Inorganic, Physical, Theoretical & Analytical, 16A(10), 821–825 (1978).

    Google Scholar 

  70. M. Dizechi and E. Marschall, Correlation for viscosity data of liquid mixtures, Ind. Eng. Chem. Proc. Des. Dev. 21(2), 282–289 (1982).

    Google Scholar 

  71. L. Grunberg and A. H. Nissan, Mixture law for viscosity, Nature, 164, 799–800 (1949).

    Google Scholar 

  72. J.D. Isdale, Symposium on Transport Properties of Fluids and Fluid Mixtures, Natl. Eng. Lab. East Kilbride, Glasgow, Scotland (1979).

    Google Scholar 

  73. J. D. Isdale, J. C. MacGillivray, and G. Cartwright, Prediction of Viscosity of Organic Liquid Mixtures by a Group Contribution Method, Natl. Eng. Lab. Rept. East Kilbride, Glasgow, Scotland (1985).

    Google Scholar 

  74. C. H. Twu, Generalized method for predicting viscosities of petroleum fractions, AIChE J. 32(12), 2091–2094 (1986).

    Google Scholar 

  75. J. L. Chevalier, P. Petrino, and Y. Gaston-Bonhomme, Estimation method for the kinematic viscosity of a liquid-phase mixture, Chem. Eng. Sci. 43(6), 1303–1309 (1988).

    Google Scholar 

  76. Y. Glaston-Bonhomme, P. Petrino, and J. L. Chevalier, UNIFAC—VISCO group contribution method for predicting kinematic viscosity: extension and temperature dependence, Chem. Eng. Sci. 49(11), 1799–1806 (1994).

    Google Scholar 

  77. D. T. Wu, Prediction of viscosities of liquid mixtures by a group contribution method, Fl. Ph. Equilib. 30, 149–156 (1986).

    Google Scholar 

  78. A. M. Awwad, S. F. Al-Azzawi, and M. A. Salman, Volumes and viscosities of benzene + n-alkane mixtures, Fl. Ph. Equilib. 31(2), 171–182 (1986).

    Google Scholar 

  79. A. M. Awwad, K. A. Jbara, and A. H. Al-Dujaili, Volumes of mixing and viscosities of methylacetate + n-alkanes and n-butylacetate + n-alkanes at 298.15 K: an interpretation in terms of the Van-Patterson, the absolute rate and free volume theories, Thermochimica Acta, 129(2), 249–262 (1988).

    Google Scholar 

  80. M. R. Islami and S. K. Quadri, Ultrasonic velocity and viscosity of binary liquid mixtures, Thermochimica Acta, 115, 335–344 (1987).

    Google Scholar 

  81. R. P. Chhabra and T. Sridhar, Estimation of viscosity of liquid mixtures using Hildebrand’s fluidity model, Chem. Eng. J. (Amsterdam) 40(1), 39–43 (1989).

    Google Scholar 

  82. R. P. Chhabra and D. K. Sheth, Temperature and composition dependence of the viscosity of liquid mixtures: a predictive approach, Chem. Eng. Proc. 27(1), 53–58 (1990).

    Google Scholar 

  83. N. Mamagakis and C. Panayiotou, Excess volume and dynamic viscosity of ternary liquid mixtures, Zeit. Fur. Physik. Chemie. 162(1), 57–72 (1989).

    Google Scholar 

  84. M. Kanti, B. Lagourette, J. Alliez, and C. Boned, Viscosity of binary heptane—nonylbenzene as a function of pressure and temperature: application of Flory’s theory, Fl. Ph. Equilib. 65, 291–304 (1991).

    Google Scholar 

  85. W. Cao, A. Fredenslund, and P. Rasmussen, Statistical thermodynamic model for viscosity of pure liquids and liquid mixtures, Ind. Eng. Chem. Res. 31(11), 2603–2619 (1992).

    Google Scholar 

  86. N. V. Sastry and P. N. Dave, Thermodynamics of acrylic ester-organic solvent mixtures. II. Viscosities of mixtures of methyl methacrylate, ethyl methacrylate or butyl methacrylate with n-hexane, n-heptane, carbon tetrachloride, chlorobenzene or odichlorobenzene at 303.15 K, Thermochimica Acta, 286(1), 119–130 (1996).

    Google Scholar 

  87. N. V. Sastry, N. J. Jain, A. George, and P. Bahadur, Viscosities, speeds of sound and excess isentropic compressibilities of binary mixtures of alkyl alkanoate-hydrocarbons at 308.15 K and 318.15 K, Fl. Ph. Equilib. 163(2), 275–289 (1999).

    Google Scholar 

  88. A. Ali, S. Hyder, and A.K. Nain, Studies on molecular interactions in binary liquid mixtures by viscosity and ultrasonic velocity measurements at 303.15 K, l. Mol. Liq. 79 (2), 89–99 (1999).

    Google Scholar 

  89. L. Qun-Fang and H. Yu-Chun, Correlation of viscosity of binary liquid mixtures, Fl. Ph. Equilib. 154(1), 153–163 (1999).

    Google Scholar 

  90. M. J. Lee, J. Y. Chiu, S. M. Hwang, and H. Lin, Viscosity Calculations with the Eyring-Patel-Teja Model for Liquid Mixtures, Ind. Eng. Chem. Res. 38(7), 2867–2876 (1999).

    Google Scholar 

  91. R.J. Martins, M. J. E. deCardoso, and O. E. Barcia, Excess Gibbs Free Energy Model for Calculating the Viscosity of Binary Liquid Mixtures, Ind. Eng. Chem. Res. 39(3), 849–854 (2000).

    Google Scholar 

  92. R. J. Martins, M. E. J. deCardoso, and O. E. Barcia, Calculation of Viscosity of Ternary and Quaternary Liquid Mixtures, Ind. Eng. Chem. Res. 40(4), 1271–1275 (2001).

    Google Scholar 

  93. P. Protopapas and N. A. D. Parlee, Theory of transport in liquid metals. III. Calculation of shear viscosity coefficients of binary alloys, Chem.Phys. 11(1), 201–215 (1975).

    Google Scholar 

  94. H. Chiriac, M. Tomut, and M. Grigorica, On the viscosity near the melting point of some liquid glass-forming transition metal alloys, J. Non-Cryst. Solids. 205–207(Pt. 2), 504–507 (1996).

    Google Scholar 

  95. D. S. Jung and D. Didion, Mixing rule for liquid viscosities of refrigerant mixtures, Intl. J. Refrig. 13(4), 243–247 (1990).

    Google Scholar 

  96. G. Latini, L. Laurenti, F. Marcotullio, and P. Pierpaoli, Liquid dynamic viscosity: a general prediction method with application to refrigerants and refrigerant mixtures, Int. J. Refrig. 13(4), 248–255 (1990).

    Google Scholar 

  97. G. Latini, G. Passerini, and F. Polonara, A relationship between dynamic viscosity and reduced temperature of refrigerant fluids and their mixtures in the liquid phase, Fl. Ph. Equilib. 125(1–2), 205–217 (1996).

    Google Scholar 

  98. M. L. Hubet and J. Ely, Prediction of viscosity of refrigerants and refrigerant mixtures, Fl. Ph. Equilib. 80, 239–248 (1992).

    Google Scholar 

  99. S. A. Klein, M. O. McLinden, and A. Laesecke, An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures, Intl. J.Refrig. 20(3), 208–217 (1997).

    Google Scholar 

  100. S. L. Passman, D. A. Drew, An exact solution for shearing flow of multicomponent mixtures, Chem.Eng. Sci. 46(9), 2331–2338 (1991).

    Google Scholar 

  101. H. Korsten, Viscosity of liquid hydrocarbons and their mixtures, AIChE J. 47(2), 453–462 (2001).

    Google Scholar 

  102. U. R. Kapadi, D. G. Hundiwale, N. B. Patil, M. K. Lande, and P. R. Patil, Studies of viscosity and excess molar volume of binary mixtures of propane-1,2 diol with water at various temperatures, Fl. Ph. Equilib. 192(1–2), 63–70 (2001).

    Google Scholar 

  103. M. J. Assael, N. K. Dalouti, and I. Metaxa, On the correlation of transport properties of liquid mixtures, Fl. Ph. Equilib. 199(1–2), 237–247 (2002).

    Google Scholar 

  104. V. Vesovic, Predicting the viscosity of halogenated hydrocarbon mixtures, Fl. Ph. Equilib. 199(1–2), 295–306 (2002).

    Google Scholar 

  105. R. Macias-Salinas, F. Garcia-Sanchez, and S. Eliso-Jimenez, An equation-of-statebased viscosity model for non-ideal liquid mixtures, Fl. Ph. Equilib. 210(2), 319–334 (2003).

    Google Scholar 

  106. R. Rosal, R. I. Medina, E. Foster, and J. MacInnes, Viscosities and densities for binary mixtures of cresols, Fl. Ph. Equilib. 211(2), 143–150 (2003).

    Google Scholar 

  107. C. Boned, C. K. Z. Mikkelsen, A. Baylaucq, and P. Dauge, High-pressure dynamic viscosity and density of two synthetic hydrocarbon mixtures representative of some heavy petroleum distillation cuts, Fl. Ph. Equilib. 212(1–2), 143–164 (2003).

    Google Scholar 

  108. A. J. Queimada, J. M. Marrucho, E. H. Stenby, and J. A. P. Coutinho, Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes, Fl. Ph. Equilib. 222–223, 161–168 (2004).

    Google Scholar 

  109. A. Rodriguez A. J. Canosa, and A. Dominguez, Viscosities of dimethyl carbonate with alcohols at several temperatures: UNIFAC-VISCO interaction parameters (—OCOO—/alcohol), Fl. Ph. Equilib. 216(2), 167–174 (2004).

    Google Scholar 

  110. M. A. Barrufet and D. Dexheimer, Use of an automatic data quality control algorithm for crude oil viscosity data, Fl. Ph. Equil. 219(2), 113–121 (2004).

    Google Scholar 

  111. A. M. Elsharkawy, S. A. Hassan, Y. SKh. Hashmi, and M. A. Fahim, New Compositional Models for Calculating the Viscosity of Crude Oils, Ind. Eng.Chem. Res. 42(17), 4132–4142 (2003).

    Google Scholar 

  112. L. T. Novak, C. C. Chen, and Y. Song, Segment-Based Eyring-NRTL Viscosity Model for Mixtures Containing Polymers, Ind. Eng. Chem. Res. 43(19), 6231–6237 (2004).

    Google Scholar 

  113. M. J. Lee, S. M. Hwang, and J. T. Chen, Density and viscosity calculations for polar solutions via neural networks, J. Chem. Eng. Japan. 27(6), 749–754 (1994).

    Google Scholar 

  114. M. J. Lee and M. C. Wei, Corresponding-states model for viscosity of liquids and liquid mixtures, J. Chem. Eng. Japan, 26(2), 159–165 (1993).

    Google Scholar 

  115. J. Kendall and K. P. Monroe, Viscosity of liquids. III. Ideal solutions of solids in liquids, J. Am. Chem. Soc. 39, 1802–1806 (1917).

    Google Scholar 

  116. S. A. Arrhenius, Uber die Dissociation der in Wasser gelosten Stoffe, Z. Phys. Chem. 1, 631–648 (1887).

    Google Scholar 

  117. G.M. Panchenkov, Calculation of absolute values of the viscosity of liquids, Zhurn. Fiz. Khim. 24, 1390–1406 (1950).

    Google Scholar 

  118. O. Faust, The Inner Friction of Liquid Mixtures, its Dependence on Temperature, and the Relation between the Inner Friction of Liquids and their Vapor Pressure, Z. Phys. Chem. 79, 97–123 (1912).

    Google Scholar 

  119. J. Zawidzki, Z. Phys. Chem. 39, 129 (1909) [as quoted in S. Bretsznajder, Prediction of transport and other physical properties of fluids, Pergamon, Oxford (1971)].

    Google Scholar 

  120. H. G. Reik, The relation between viscosity and vapor pressure in binary mixtures. II, Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie, 59, 126–136 (1955).

    Google Scholar 

  121. A. J. A. van der Wijk, The viscosity of binary mixtures, Nature, 138, 845 (1936).

    Google Scholar 

  122. M. Tamura and M. Kurata, Viscosity of a binary mixture of liquids, Bull. Chem. Soc. Japan, 25, 32 (1952).

    Google Scholar 

  123. F. W. Lima, The viscosity of binary liquid mixtures, J. Phys. Chem. 56, 1052–1054 (1952).

    Google Scholar 

  124. R. P. Shukla and R. P. Bhatnagar, Viscosity of mixtures. I. Liquid-liquid binary mixtures, J. Phys. Chem. 59, 988–989 (1955); R. P. Shukla and R. P. Bhatnagar, Viscosity of mixtures. II. Liquid-liquid ternary mixtures, J Phys. Chem. 60, 809–810 (1956).

    Google Scholar 

  125. R. A. McAllister, The viscosity of liquid mixtures, AIChE J. 6(3), 427–431 (1960).

    Google Scholar 

  126. R. K. Hind, E. McLaughlin, and U. R. Ubbelohde, Structure and viscosity of liquids. Camphor + pyrene mixtures, Trans. Farad. Soc. 56, 328–330 (1960).

    Google Scholar 

  127. A. Einstein, A new determination of molecular dimensions, Ann. d. Physik 19, 289–306 (1906).

    Google Scholar 

  128. E. F. Kurgaev, Viscosity of suspensions, Dokl. Akad. Nauk S.S.S.R. 132, 392–394 (1960).

    Google Scholar 

  129. G. J. Taylor, The viscosity of fluid containing small drops of another fluid, Proc. Roy. Soc.(London) 138A, 41 (1932).

    Google Scholar 

  130. R. K. Neyogi and B. N. Ghosh, The viscosity of emulsions, J. Ind. Chem. Soc. 30, 113–118 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Viswanath, D.S., Ghosh, T.K., Prasad, D.H., Dutt, N.V., Rani, K.Y. (2007). VISCOSITIES OF SOLUTIONS AND MIXTURES. In: Viscosity of Liquids. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5482-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5482-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5481-5

  • Online ISBN: 978-1-4020-5482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics