Skip to main content

A review on gold–ammonia bonding patterns

  • Conference paper
Topics in the Theory Of Chemical and Physical Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. N.A. Lambropoulos, J.R. Reimers, and N.S. Hush, Binding to gold(0): accurate computational methods with application to AuNH3 . J. Chem. Phys. 116, 10277-10286, 2002.

    Article  CAS  Google Scholar 

  2. A. Antušek, M. Urban, and A.J. Sadlej, Lone pair interactions with coinage metal atoms: weak van der Waals complexes of the coinage metal atoms with water and ammonia. J. Chem. Phys. 119, 7247-7262, 2003.

    Article  Google Scholar 

  3. (a) J. Hruš ák, R.H. Hertwig, D. Schr öder, P. Schwerdtfeger, W. Koch, and H. Schwarz, Relativistic effects in cationic gold (I) complexes - a comparative study of ab initio pseudopotential and density-functional methods. Organometallics 14, 1284-1291, 1995; (b) T.H. Hertwig, J. Hruš ák, D. Schr öder, W. Koch, and H. Schwarz, The metal-ligand bond strengths in cationic gold (I) com-plexes. Application of approximate density functional theory. Chem. Phys. Lett. 236, 194-200, 1995; (c) D. Schr öder, J. Hruš ák, R.H. Hertwig, W. Koch, P. Schwerdtfeger, and H. Schwarz, Experimental and theoretical studies of gold (I) complexes Au(L)+ (L = H2O, CO, NH3, C3H6, C4H6, C6H6, C6F6). Organometallics 14, 312-316, 1995; (d) R. Armunanto, C.F. Schwenk, and B.M. Rode, Gold (I) in liquid ammonia: ab initio QM/MM molecular dynamics simulation. J. Am. Chem. Soc. 126, 9934-9935, 2004.

    Google Scholar 

  4. M. Antolovich, L.F. Lindoy, and J.R. Reimers, Explanation of the anomalous complexation of silver (I) with ammonia in terms of the poor affinity of the ion for water. J. Phys. Chem. A 108, 8434-8438, 2004.

    Article  CAS  Google Scholar 

  5. D.-Y. Wu, B. Ren, Y.-X. Jiang, X. Xu, and Z.-Q. Tian, Density functional study and normal-mode analysis of the bindings and vibrational frequency shifts of the pyridine-M (M = Cu, Ag, Au, Cu+ , Ag+ , Au+ , and Pt) complexes. J. Phys. Chem. A 106, 9042-9052, 2002.

    Article  CAS  Google Scholar 

  6. H.-C. Hsu, F.-W. Lin, C.-C. Lai, P.-H. Su, and C.-S. Yeh, Photodissociation and theoretical studies of the Au + -(C5 H5 N) complex. New J. Chem. 26, 481-484, 2002.

    Article  CAS  Google Scholar 

  7. (a) P. Pyykk ö , Theoretical chemistry of gold I. Angew. Chem. Int. Ed. 43, 4412-4456, 2004; (b) P. Pyykk ö , Theoretical chemistry of gold II. Inorg. Chim. Acta 358, 4113-4130, 2005.

    Google Scholar 

  8. Sponer, and P. Hobza, Ab initio study of the interaction of guanine and adenine with various mono- and bivalent metal cations(Li+ , Na+ , K+ , Rb+ , Cs+ ; Cu+ , Ag+ , Au+ ; Mg2+ , Sponer, M. Sabat, J.V. Burda, J. Leszcynski, P. Hobza, and B. Lippert, Metal ions in non-complementary DNA base pairs: ab-initio study of Cu (I), Ag (I), and Au (I) complexes with the cytosine-adenine base pair. J. Biol. Inorg. Chem. 4, 537-545, 1999.

    Article  CAS  Google Scholar 

  9. A. Billi ć, J.R. Reimers, N.S. Hush, and J. Hafner, Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 116, 8981-8987, 2002.

    Article  Google Scholar 

  10. (a) S.M. Hou, J.X. Zhang, R. Li, J. Ning, R.S. Han, Z.Y. Shen, X.Y. Zhao, Z.Q. Xue, and Q. Wu, First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology 16,239-244, 2005; (b) R. Stadler, K.S. Thygesen, and K.W. Jacobsen, Forces and conductance in a single-molecule bipyridine junction. Phys. Rev. B 72, 241401(R)-1 - 241401-4, 2005.

    Google Scholar 

  11. (a) B. Xu, X. Xiao, N.J. Tao, Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164-16165, 2003. (b) P. V élez, S.A. Dassie, and E.P.M. Leiva, First principles calculations of mechanical properties of 4,4(‘)-bipyridine attached to Au nanowires. Phys. Rev. Lett. 95,045503-1 - 045503-4, 2005.

    Google Scholar 

  12. (a) D.I. Gittins and F. Caruso, Spontaneous phase transfer of nanoparticule metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001-3004, 2001; (b) V.J. Gandubert and R.B. Lennox, Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles. Langmuir 21, 6532-6539, 2005.

    Google Scholar 

  13. (a) K. Drenck, P. Hvelplund, C.J. McKenzie, and S.B. Nielsen, Identification of the short-lived Au(N3 )4 2 dianion from its Coulomb explosion products. Int. J. Mass Spectr. 244, 144-147, 2005; (b) P. Braunstein, C. Frison, N. Oberbeckmann-Winter, X. Morise, A. Messaoudi, M. B énard, M.-M. Rohmer, and R. Welter, An oriented 1D coordination/organometallic dimetallic molecular wire with Ag-Pd metal-metal bonds. Angew. Chem. Int. Ed. 43, 6120-6125, 2004; (c) S. Fukuzumi, K. Ohkubo, W.E.Z. Ou, J. Shao, K.M. Kadish, J.A. Hutchison, K.P. Ghiggino, P.J. Sintic, and M.J. Crossley, Metal-centered photoinduced electron transfer reduction of a gold (III) porphyrin cation linked with a zinc porphyrin to produce a long-lived charge-separated state in nonpolar solvents. J. Am. Chem. Soc. 125, 14984-14985, 2003; (d) X. Ding, Z. Li, J. Yang, J.G. Hou, and Q. Zhu, Theoretical study of nitric oxide adsorption on Au clusters. J. Chem. Phys. 121, 2558-2562, 2004; A. Fielicke, G.v. Helden, G. Meijer, B. Simard, and D.M. Rayner, Direct observation of size-dependent activation of NO on gold clusters. Phys. Chem. Chem. Phys. 7, 3906-3999, 2005.

    Google Scholar 

  14. (a) E.S. Kryachko and F. Remacle, Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N-H · · · Au hydrogen bond. Nano Lett. 5, 735-739, 2005; (b) E.S. Kryachko and F. Remacle, Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters. J. Phys. Chem. B 109, 22746-22757, 2005; (c) F. Remacle and E.S. Kryachko, Three-gold cluster as proton acceptor in nonconventional hydrogen bonds O-H · · · Au and N-H · · · Au. In Progress in Theoretical Chemistry and Physics, Vol. 15, J. Maruani and S. Wilson (eds.), Springer, Dordrecht, 2006, pp. 433-450.

    Google Scholar 

  15. (a) Q. Chen, D.J. Fraenkel, and N.V. Richardson, Self-assembly of adenine on Cu (110) surfaces. Langmuir 18, 3219-3225, 2002; (b) B. Giese and D. McNaughton, Surface-enhanced Raman spec-troscopic study of Uracil: the influence of the surface substrate, surface potential, and pH. J. Phys. Chem. B 106, 1461-1470, 2002; (c) A.P.M. Camargo, H. Baumg ärtel, and C. Donner, Coadsorp-tion of the DNA bases thymine and adenine at the Au (111) electrode. Phys. Chem. Chem. Phys. 5, 1657-1664, 2003.

    Google Scholar 

  16. (a) L.M. Demers, M. O¨ stblom, H. Zhang, N.-H. Jang, B. Liedberg, C.A. Mirkin, Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc. 124, 11248-11249, 2002; (b) A. Gourishankar, S. Shukla, K.N. Ganesh, and M. Sastry, Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparti-cles. J. Am. Chem. Soc. 126, 13186-13187, 2004; (c) S. Rapino and F. Zerbetto, Modeling the stability and the motion of DNA nucleobases on the gold surface. Langmuir 21, 2512-2518, 2005; (d) M. O¨ stblom, B. Liedberg, L.M. Demers, and C.A. Mirkin, On the structure and desorption dynam-ics of DNA bases adsorbed on gold: a temperature-programmed study. J. Phys. Chem. B 109, 15150-15160,2005.

    Google Scholar 

  17. A.J. Lupinetti, S. Fau, G. Frenking, and S.H. Strauss, Theoretical analysis of the bonding between CO and positively charged atoms. J. Phys. Chem. A 101, 9551-9559, 1997.

    Article  CAS  Google Scholar 

  18. (a) D.H. Wells, Jr., W.N. Delgass, and K.T. Thomson, Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer: a DFT study. J. Catal. 225, 69-77, 2004; (b) Z.-P. Liu, S.J. Jenkins, and D.A. King, Origin and activity of oxidized gold in water-gas shift catalysis. Phys. Rev. Lett. 94, 196102-1-196102-4 (2005); (c) A.M. Joshi, W.N. Delgass, and K.T. Thomson, Comparison of the catalytic activity of Au3 , Au4 + , Au5 , and Au5 − in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: density functional theory investigation. J. Phys. Chem. B 109, 22392-22406, 2005; and references therein.

    Google Scholar 

  19. The present computations were conducted with GAUSSIAN 03 package of quantum chemical programs

    Google Scholar 

  20. The Kohn-Sham self-consistent field formalism with the hybrid density functional B3LYP potential was used together with the basis sets 6-311++G (d,p) for ammonia and the energy-consistent 19-(5s 2 5 p6 5d 10 6s 1 ) valence-electron relativistic effective core potential (RECP) for gold developed by Ermler, Christiansen, and co-workers with the primitive basis set (5s 5 p4d )

    Google Scholar 

  21. All geometrical optimizations were performed with the keywords “tight” and “Int=UltraFine”. The unscaled harmonic vibrational frequencies and zero-point vibrational energies (ZPVE) are also computed. Enthalpies and entropies were estimated from the partition functions calculated at room temperature (298.15 K) under a pressure of 1 atm, using Boltzmann thermostatistics and the rigid-rotor-harmonic-oscillator approximation

    Google Scholar 

  22. The binding energy of the complex AB, Eb [AB], is defined as the energy difference Eb [AB] ≡ |E[AB]-(E[A] + E[B])|. The ZPVE-corrected binding energies Eb are reported throughout this work. For a recent computational work on ammonia clusters within the B3LYPF/6-311++G(d,p) level see Ref. [23] and references therein. For a recent review on small gold clusters see Ref. [24]. The main features of gold clusters Au3 Z (Z = 0, ±1) are gathered in note [25]. The propensity of Au3 to behave as a nonconventional proton donor and to form noncon-ventional hydrogen bonds with the conventional proton donors have been computationally discovered in the works referred to at [26].

    Google Scholar 

  23. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Mont-gomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, GAUSSIAN 03 (Revision A.1), Gaussian, Inc., Pittsburgh, PA, USA, 2003.

    Google Scholar 

  24. R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, L.A. LaJohn, P.A. Christiansen, Ab initio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn. J. Chem. Phys. 93, 6654-6670, 1990.

    Article  CAS  Google Scholar 

  25. (a) D.A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976; (b) J.E. Del Bene, H.D. Mettee, M.J. Frisch, B.T. Luke, and J.A. Pople, Ab initio computation of the enthalpies of some gas-phase hydration reactions. J. Phys. Chem. 87, 3279-3282, 1983.

    Google Scholar 

  26. F.M. Abu-Awad, A comparative study of the structure and electrostatic potential of H-bonded clusters of neutral ammonia (NH3 )n (n= 2-6). J. Mol. Struct. (THEOCHEM) 683, 57-63, 2004, and references therein.

    Google Scholar 

  27. (a) F. Remacle and E.S. Kryachko, Small gold clusters Au5≤n≤8 and their cationic and anionic cousins. Adv. Quantum Chem. 47, 423-464, 2004; (b) F. Remacle and E.S. Kryachko, Structure and energetics of two- and three-dimensional neutral, cationic, and anionic gold clusters AuZ 5 ≤n≤9 (Z = 0, ±1). J. Chem. Phys. 122, 044304-1 - 044304-14 (2005).

    Google Scholar 

  28. Within the present computational approach, the triangular conformer of the Au3 gold cluster is char-acterized by an electronic energy of −407.907290 hartree, ZPVE = 0.42 kcal · mol−1 , enthalpy and entropy being respectively equal to −407.900617 hartree and to 89.66 cal · K−1 · mol−1 . The geometry is determined by r(Au1 -Au2 ) = r(Au2 -Au3 ) = 2.654A˚ , r(Au1 -Au3 ) = 2.992A˚ , and Au1 Au2 Au3 = 68.6◦ , implying the so-called “geometrical frustration” (or asymmetry) due to the Jahn-Teller distortion of the ground electronic state of the triangular conformation (see Ref. [26]). The chain structure Au3 ch is characterized by an electronic energy of −407.911124 hartree, ZPVE = 0.427 kcal · mol−1 , and an enthalpy equal to −407.904441 hartree. Its bond lengths r(Au1 -Au2 ) = r(Au1 -Au3 ) = 2.619 A˚ and its bond angle Au2 Au1 Au3 = 115.2◦ . The chain structure is the most stable conformer of Au3 lying below the triangle structure by 2.4 kcal · mol−1 after ZPVE, which is consistent with the value of 2.3 kcal · mol−1 recently reported by Lee et al. [27] - although within a so-called DFT error (see Ref. [23] and references therein), both these clusters are nearly isoenergetic. Throughout the present work, Au3 is identified with the triangular gold cluster since, as shown in [25b], the chain cluster Au3 ch is not relevant for binding large clusters and forming nonconventional hydrogen bonds. The cation Au3 + is characterized by an electronic energy of −407.649308 hartree, ZPVE = 0.54 kcal · mol−1 , enthalpy and entropy being respectively equal to −407.642608 hartree and to 86.062 cal ·K−1 ·mol−1 . The equilibrium geometry is given by r(Au1 -Au2 ) = r(Au2 -Au3 ) = 2.685 A and r(Au1 -Au3 ) = 2.688 A˚ . The anionic cluster Au3 − is characterized by an electronic energy of −408.040996 hartree, ZPVE = 0.45 kcal · mol−1 , the enthalpy and entropy being respectively equal to −408.034311 hartree and to 81.08 cal · K−1 · mol−1 . Geometrically, Au3 − is a triatomic chain with r(Au1 -Au2 ) = r(Au2 -Au3 ) = 2.634A˚ .

    Google Scholar 

  29. (a) E.S. Kryachko and F. Remacle, Three-gold clusters form nonconventional hydrogen bonds O-H · · · Au and N-H · · · Au with formamide and formic acid. Chem. Phys. Lett. 404, 142-149, 2005; (b) E.S. Kryachko, A. Karpfen, and F. Remacle, Nonconventional hydrogen bonding between clusters of gold and hydrogen fluoride. J. Phys. Chem. A 109, 7309-7318, 2005; (c) E.S. Kryachko and F. Remacle, Small gold clusters form nonconventional hydrogen bonds X-H · · · Au: gold-water clusters as example. In Theoretical Aspects of Chemical Reactivity, A. Torro-Labb é (ed.), Theoretical and Computational Chemistry, Vol. 16, P. Politzer (ed.), Elsevier, Amsterdam, 2005.

    Google Scholar 

  30. (a) G. Bravo-P érez, I.L. Garz ón, and O. Novaro, Ab initio study of small gold clusters. J. Mol. Struct. (THEOCHEM) 493, 225-231, 1999; (b) H. Gr önbeck and W. Andreoni, Gold and platinum microclusters and their anions: comparison of structural and electronic properties. Chem. Phys. 262, 1-14, 2000.

    Google Scholar 

  31. H.M. Lee, M. Ge, B.R. Sahu, P. Tarakeshwar, and K.S. Kim, Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: origins of ductility of gold and gold-silver alloy formation. J. Phys. Chem. B 107, 9994-10005, 2003.

    Article  CAS  Google Scholar 

  32. (a) R. N äs änen, Equilibrium in ammoniacal solution of silver nitrate. Acta Chem. Scand. 1, 763-769, 1947; (b) F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 1988; (c) R. Garner, J. Yperman, J. Mullens, L.C. van Poucke, A potentiometric study of the complexation of aliphatic acyclic monoamines with Ag (I) in 1 m nitrate. J. Coord. Chem. 30, 151-164, 1993.

    Google Scholar 

  33. The experimental value of log β2 = 26.5 where β2 = K 1 K 2 the product of formation constants was measured by L.H. Skibsted and J. Bjerrum, Studies on gold complexes. I. Robustness, stability and acid dissociation of the tetramminegold (III). Acta Chem. Scand., Ser. A 28, 740-746, 1974.

    Google Scholar 

  34. (a) C.G. Pimentel and A.L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960; (b) P. Schuster, G. Zundel, and C. Sandorfy (eds.), The Hydrogen Bond. Recent Developments in The-ory and Experiments, North-Holland, Amsterdam, 1976; (c) G.A. Jeffrey, An Introduction to Hydro-gen Bonding, The University Press, Oxford, 1997; (d) S. Scheiner, Hydrogen Bonding. A Theoretical Perspective, The University Press, Oxford, 1997; (e) G.R. Desiraju and T. Steiner, The Weak Hydro-gen Bond in Structural Chemistry and Biology, The University Press, Oxford, 1999; (f) T. Steiner, The hydrogen bond in the solid state, Angew. Chem. Int. Ed. 41, 48-76, 2002.

    Google Scholar 

  35. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, The University Press, Cambridge, 2004.

    Google Scholar 

  36. (a) K.L. Kompa and R.D. Levine, A molecular logic gate. Proc. Natl. Acad. Sci. USA 98, 410-414, 2001; (b) F. Remacle, S. Speiser, and R.D. Levine, Intermolecular and intramolecular logic gates. J. Phys. Chem. A 105, 5589-5591, 2001; (c) F. Remacle and R.D. Levine, Towards molecular logic machines. J. Chem. Phys. 114, 10239-10246, 2001; (d) C. Joachim, J.K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541-548, 2000; (e) C.P. Collier, E.W. Wong, M. Belohradsk, F.M. Raymo, J. F. Stoddart, P.J. Kuekes, R.S. Williams, and J.R. Heath, Electronically configurable molecular-based logic gates. Science 285, 391-394, 1999; (f) J.R. Heath, Wires, switches and wiring, a route towards a chemically assembled electronic nanocomputer. Pure Appl. Chem. 72, 11-20, 2000; (g) M.A. Reed and J.M. Tour, Comput- ing with molecules, Sci. Am.282,86-89 (2000);(h) J. Fiur á šek, N.J. Cerf, I. Duchemin, and C. Joachim, Intramolecular Hamiltonian logic gates. Physica E24,161-172, 2004;(i) C.M. Tesch and R. De Vivie-Riedle, Vibrational molecular quantum computing: basis set independence and theoretical realization of the Deutsch-Jozsa algorithm. J. Chem. Phys. 121, 12158-12168 (2004); (k) J.H. Reina, R.G. Beausoleil, T.P. Spiller, and W.J. Munro, Radia-tive corrections and quantum gates in molecular systems. Phys. Rev. Lett. 93, 250501-1 -250501-4; (l) S. Giordani and F.M. Raymo, A switch in a cage with a memory. Org. Lett. 5, 3559-3562, 2003; (m) E.G. Emberly and G. Kirczenow, The smallest molecular switch. Phys. Rev. Lett.91,188301-1-188301-4,2003;(n) Y.H. Jang, S. Hwang, Y.-H. Kim, S.S. Jang, and W.A. Goddard III, DFT studies [2] of the rotaxane component of the StoddartHeath molecular switch. J. Am. Chem. Soc. 126, 12636-12645, 2004; (o) I. Duchemin and C. Joachim, A quantum digital half adder inside a single molecule. Chem. Phys. Lett. 406, 167-172, 2005; (p) F. Remacle and R.D. Levine, Quasiclassical computation. Proc. Natl. Acad. Sci. USA 101, 12091-12095, 2004; (q) F. Remacle, J.R. Heath, and R.D. Levine, Electrical addressing of confined quantum systems for quasiclassical computation and finite state logic machines. Proc. Natl. Acad. Sci. USA 102, 5653-5658, 2005; and references therein.

    Google Scholar 

  37. (a) S. Wolf, G. Sommerer, S. Rutz, E. Schreiber, T. Leisner, L. W öste, and R.S. Berry, Spec-troscopy of size-selective neutral clusters: femtosecond evolution of neutral silver trimers. Phys. Rev. Lett. 74, 4177-4180, 1995; (b) L.D. Socaciu-Siebert, J. Hagen, J. Le Roux, D. Popolan, M. Vaida, S. Vajda, T.M. Bernhardt, and L. W öste, Ultrafast nuclear dynamics induced by photodetachment of Ag2 − and Ag2 O2 − : oxygen desorption from a molecular silver surface. Phys. Chem. Chem. Phys. 7, 2706-2709, 2005, and references therein; (c) R. Mitri ć , M. Hartmann, B. Stanca, V. Bona či ć -Kouteck ý , and P. Fantucci, Ab initio adiabatic dynamics combined with Wigner distribution approach  to femtosecond pump-probe negative ion to neutral to positive ion (NeNePo) spectroscopy of Ag2 Au, Ag4 , and Au4 clusters. J. Phys. Chem. A 105, 8892-8905, 2001; (d) T.M. Bernhardt, J. Hagen, L.D. Socaciu-Siebert, R. Mitri ć , A. Heidenreich, J. Le Roux, D. Popolan, M. Vaida, L. W öste, V. Bona či ć -Kouteck ý , and J. Jortner, Femtosecond time-resolved geometry relaxation and ultrafast intramolecular energy redistribution in Ag2 Au energy. Chem. Phys. Chem. 6, 243-253, 2005.

    Google Scholar 

  38. S. Ishiuchi, M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, M. Fujii, O. Dopfer, and K. M üller-Dethlefs, Real-time observation of ionization-induced hydrophobic → hydrophilic switching. Angew. Chem. Int. Ed. 44, 6149-6151, 2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kryachko, E.S., Remacle, F. (2007). A review on gold–ammonia bonding patterns. In: Lahmar, S., Maruani, J., Wilson, S., Delgado-Barrio, G. (eds) Topics in the Theory Of Chemical and Physical Systems. Progress in Theoretical Chemistry and Physics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5460-0_7

Download citation

Publish with us

Policies and ethics