Skip to main content

NUMERICAL SIMULATIONS OF LONG-RANGE PLASMONIC TRANSMISSION LINES

  • Chapter
Surface Plasmon Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 131))

  • 4489 Accesses

Abstract

Structures that guide waves can be found in almost every optoelectronic or photonic device. Yet, the basic principles of guided waves in practical realizations have not evolved substantially over the past several decades. At microwave or radio frequencies (RF), waveguides typically comprise metal-enclosed volumes with or without a central conductor; in the latter case, the lateral dimensions of the waveguide dictate the frequencies of operation. At optical wavelengths, metals are comparatively poor conductors and have traditionally been excluded as optical components. Instead, dielectric waveguides are employed in which the mismatch between a higher dielectric region and free space or a lower dielectric cladding constrains light in a plane perpendicular to propagation. Because of the low losses in insulating dielectrics, optical waveguides (such as fiber optics) can support propagating modes with extraordinarily low absorption attenuation—often less than 1 dB per kilometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Pozar: Microwave Engineering (John Wiley & Sons, New York, 1998).

    Google Scholar 

  2. A. Yariv: Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).

    Google Scholar 

  3. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J.-P. Goudonnet: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Phys. Rev. B 60(12), 9061–9068 (1999).

    Article  CAS  Google Scholar 

  4. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, J.-P. Goudonnet: Near-field observation of surface plasmon polariton propagation on thin metal stripes, Phys. Rev. B 64(4), 045411 (2001).

    Article  CAS  Google Scholar 

  5. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg: Surface plasmon propagation in microscale metal stripes, Appl. Phys. Lett. 79(1), 51–53 (2001).

    Article  CAS  Google Scholar 

  6. P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures, Phys. Rev. B 61(15) 10484–10503 (2001).

    Article  Google Scholar 

  7. P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures, Phys. Rev. B 63, 125417 (2001).

    Article  CAS  Google Scholar 

  8. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek: Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width, Optics Lett. 52(11), 844–846 (2000).

    Article  Google Scholar 

  9. R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons, Optics. Express 13(3), 977–984 (2005).

    Article  Google Scholar 

  10. T. Nikolajsen, K. Leosson, I. Salakhutdinov, S.I. Bozhevolnyi: Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths, Appl. Phys. Lett. 82(5), 668–670 (2003).

    Article  CAS  Google Scholar 

  11. T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi: Surface plasmon polariton based modulators and switches operating at telecom wavelengths, Appl. Phys. Lett. 82(5), 668–670 (2003).

    Article  CAS  Google Scholar 

  12. Rashid Zia, Anu Chandran, Mark L. Brongersma: Dielectric waveguide model for guided surface polaritons, Optics lett. 30(12), 1473–1475 (2005).

    Article  Google Scholar 

  13. H. Raether: Surface Plasmons (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  14. W.L. Barnes, A. Dereux, T.W. Ebbesen: Surface plasmon subwavelength optics, Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  15. D. Sarid: Long-range surface-plasma waves on very thin metal films, Phys. Rev. Lett. 47(26), 1927–1930 (1981).

    Article  CAS  Google Scholar 

  16. J.J. Burke, G.I. Stegeman, T. Tamir: Surface-polariton-like waves guided by thin, lossy metal films, Phys. Rev. B 33(8), 5286–5201 (1986).

    Article  Google Scholar 

  17. P.B. Johnson, R.W. Christy: Optical constants of the noble metals, Phys. Rev. B 6(12), 4370–4379 (1972).

    Article  CAS  Google Scholar 

  18. W.L. Barnes, T.W. Preist, S.C. Kitson, J.R. Sambles: Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings, Phys. Rev. B 54(9), 6227–6244 (1996).

    Article  CAS  Google Scholar 

  19. W.L. Barnes, S.C. Kitson, T.W. Preist, J.R. Sambles: Photonic surfaces for surface-plasmon polaritons, J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).

    Article  Google Scholar 

  20. S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, J. Erland: Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface, Opt. Lett. 26(10), 734–736 (2001).

    Article  CAS  Google Scholar 

  21. P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter: Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers, Appl. Phys. Lett. 85, 4–6 (2004).

    Article  CAS  Google Scholar 

  22. S.A. Maier, M.D. Friedman, P.E. Barclay, O. Painter: Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing, Appl. Phys. Lett. 86, 071103 (2005).

    Article  CAS  Google Scholar 

  23. A. Lai, C. Caloz, T. Itoh: Composite right/left-handed transmission line metamaterials, IEEE Microwave Mag. 5(3), 34–50 (2004).

    Article  Google Scholar 

  24. R. Islam, F. Elek, G.V. Eleftheriades: Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow, Electronics Lett. 40(5), 315–317 (2004).

    Article  Google Scholar 

  25. V.G. Veselago: The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, 509–514 (1968).

    Article  Google Scholar 

  26. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz: Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184–4187 (2000).

    Article  CAS  Google Scholar 

  27. A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, H. Giessen: Optical properties of planar metallic photonic crystal structures: experiment and theory, Phys. Rev. B 70, 125113 (2004).

    Article  CAS  Google Scholar 

  28. D. Marcuse: Curvature loss formula for optical fibers, J. Opt. Soc. Amer. 66, 216–220 (1976).

    Article  Google Scholar 

  29. J.-P. Berenger: A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 185–200 (1994).

    Article  Google Scholar 

  30. R. Mittra, U. Pekel: A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves, IEEE Microwave Guided Wave Lett. 5, 84–86 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark L. Brongersma Pieter G. Kik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

DEGIRON, A., SMITH, D.R. (2007). NUMERICAL SIMULATIONS OF LONG-RANGE PLASMONIC TRANSMISSION LINES. In: Brongersma, M.L., Kik, P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4333-8_5

Download citation

Publish with us

Policies and ethics