Skip to main content

The Development of Medical Databases

  • Chapter
  • First Online:
  • 1084 Accesses

Part of the book series: Health Informatics ((HI))

Abstract

Since the early 1900s physicians have followed the teachings of the famed clinician, W. Osler, to study and learn from their patients and from the medical records of their patients, in order to improve their knowledge of diseases. In the 2000s, as in the 1900s, physicians continue to initiate this learning process by taking a history of the patient’s medical problems, performing a physical examination of the patient, and then recording the history and physical examination findings in the patient’s medical record. To confirm a preliminary diagnosis and to rule-out other possible diagnoses, physicians refer the patients for selected tests and procedures that usually involve the clinical laboratory, radiology, and other clinical-support services. After reviewing the information received from these services, physicians usually arrive at a more certain diagnosis, and then prescribe appropriate treatment. For an unusual or a complex medical problem, physicians may refer the patient to appropriate clinical specialists, and may also review evidence-based reports of appropriate therapies by consulting relevant medical literature and bibliographic databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson J. Data dictionaries – a way forward to write meaning and terminology into medical information systems. Methods Inf Med. 1986;25:137–8.

    PubMed  CAS  Google Scholar 

  • Anderson JB, Jay SJ. The diffusion of computer applications in medicine: network location and innovation adoption. Proc SCAMC. 1984:549–52.

    Google Scholar 

  • ASTM (American Society for Testing and Materials) E 1238–88. Standard specifications for transferring clinical laboratory data messages between independent computer systems. Philadelphia: ASTM; 1988.

    Google Scholar 

  • ASTM (American Society for Testing and Materials) E 1239–88. Standard guide for description of reservation/registration-admission, discharge, transfer (R-ADT) systems for automated patient care information systems. Philadelphia: ASTM; 1988.

    Google Scholar 

  • ASTM (American Society for Testing and Materials) E 1238–88. Standard specifications for transferring clinical observations between independent computer systems. Philadelphia: ASTM; 1989. Revision November 30.

    Google Scholar 

  • Bakken S, Campbell KE, Cimino JJ, et al. Toward vocabulary domain specifications for health level 7-coded data elements. J Am Med Inform Assoc. 2000;7:333–42.

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ, Hammon GL. Overview of computer applications in a variety of health care areas. CRC Crit Rev Bioeng. 1975a;2(2):183–203.

    PubMed  CAS  Google Scholar 

  • Ball MJ, Hammon GL. Maybe a network of mini-computers can fill your data systems needs. Hosp Financ Manage. 1975b;29(4):48–51.

    PubMed  CAS  Google Scholar 

  • Barnett GO. Massachusetts general hospital computer system. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 517–45.

    Google Scholar 

  • Barnett GO, Souder D, Beaman P, Hupp J. MUMPS – an evolutionary commentary. Comput Biomed Res. 1981;14:112–8.

    Article  PubMed  CAS  Google Scholar 

  • Barsalou T, Wiederhold G. A cooperative hypertext interface to relational databases. Proc SCAMC. 1989:383–7.

    Google Scholar 

  • Blaine GI. Networks and distributed systems. A primer. Proc MEDINFO. 1983:1118–21.

    Google Scholar 

  • Blois MS, Henley RR. Strategies in the planning of hospital information systems. In: Journee D’Informatique Medicale. Toulouse: Institut de Recherche d’Informatique et d’Automatique; 1971. p. 89–98.

    Google Scholar 

  • Blois MS, Wasserman AI. The integration of hospital information systems. Journee D’Informatique Medicale, Toulouse; also: Tech Report #4, Office of Med Inform Systems. San Francisco: University of California; 1974.

    Google Scholar 

  • Blum RL. Machine representation of clinical causal relationships. Proc MEDINFO. 1983b:652–6.

    Google Scholar 

  • Blum BI. A history of computers, chap 1. In: Blum BI, editor. Clinical information systems. New York: Springer; 1986a. p. 1–32.

    Chapter  Google Scholar 

  • Blum BI. Programming languages, chap 4. In: Blum BI, editor. Clinical information systems. New York: Springer; 1986b. p. 112–49.

    Chapter  Google Scholar 

  • Blum BI. Design methods for clinical systems. Proc SCAMC. 1986c:309–15.

    Google Scholar 

  • Blum BI, Duncan K, editors. A history of medical informatics. New York: Addison-Wesley Pub. Co; 1990. p. 1–450.

    Google Scholar 

  • Brandt CA, Morse R, Mathews K, et al. Metadata-driven creation of data marts from an EAV-modeled clinical research database. Int J Med Inform. 2002;65:225–41.

    Article  PubMed  Google Scholar 

  • Bryan M. 1988: the year of the data base. Personal Comput. 1988;12(1):100–9.

    Google Scholar 

  • Camp HN, Ridley ML, Walker HK. THERESA: a computerized medical consultant based on the patient record. Proc MEDINFO. 1983:612–4.

    Google Scholar 

  • Campell-Kelly M. Computing. Sci Am. 2009;301:63–9.

    Google Scholar 

  • Chen RS, Nadkarni P, Marenco L, et al. Exploring performance issues for a clinical database using an entity-attribute-value representation. J Am Med Inform Assoc. 2000;5:475–87.

    Article  Google Scholar 

  • Codd EF. A relational model of data for large shared data banks. Comm ACM. 1970;13:377–87.

    Article  Google Scholar 

  • Codd EF. Further normalization of the data base relational model. In: Rustin R, editor. Database systems. Englewood Cliffs: Prentice-Hall; 1972. p. 33–64.

    Google Scholar 

  • Codd EF. Extending the data base relational model to capture more meaning. ACM Trans Database Syst. 1979;4:397–434.

    Article  Google Scholar 

  • Codd EF, Codd SB, Salley CT. Providing OLAP (On-line Analytical Processing) to User-Analysts: an IT mandate. San Jose: Codd and Date, Inc; 1993.

    Google Scholar 

  • Collen MF. Origins of medical informatics. West J Med. 1986;145:778–85.

    PubMed  CAS  Google Scholar 

  • Collen M. Clinical research databases – a historical review. J Med Syst. 1990;14:323–44.

    Article  PubMed  CAS  Google Scholar 

  • Collen MF. The origins of informatics. J Am Med Inform Assoc. 1994;1:91–107.

    Article  PubMed  CAS  Google Scholar 

  • Collen MF. A history of medical informatics in the United States. Bethesda/Indianapolis: American Medical Informatics Assn/Bookscraft; 1995.

    Google Scholar 

  • Coltri A. Databases in health care, chap 11. In: Lehman HP, Abbott PA, Roderer NK, et al., editors. Aspects of electronic health record systems. 2nd ed. New York: Springer; 2006. p. 225–51.

    Google Scholar 

  • Connolly TM, Begg CE. Database management systems: a practical approach to design, implementation, and management. 2nd ed. New York: Addison-Wesley; 1999.

    Google Scholar 

  • Davis LS. Prototype for future computer medical records. Comput Biomed Res. 1970;3:539–54.

    Article  PubMed  CAS  Google Scholar 

  • Davis LS. A system approach to medical information. Methods Inf Med. 1973;12:1–6.

    PubMed  CAS  Google Scholar 

  • Davis LS, Terdiman J. The medical data base, chap 4. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 52–79.

    Google Scholar 

  • Davis LS, Collen MF, Rubin L, Van Brunt EE. Computer-stored medical record. Comput Biomed Res. 1968;1:452–69.

    Article  PubMed  CAS  Google Scholar 

  • Dawson J. A family of models. Byte. 1989;4:277–86.

    Google Scholar 

  • Deshpande AM, Brandt C, Nadkarni PM. Temporal query of attribute-value-patient data: utilizing the constraints of clinical studies. Int J Med Inform. 2003;70:59–77.

    Article  PubMed  Google Scholar 

  • Dick RS, Steen EB. Essential technologies for computer-based patient records: a summary. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 229–61.

    Google Scholar 

  • Dinu V, Nadkarni P. Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. Int J Med Inform. 2007;76:769–79.

    Article  PubMed  Google Scholar 

  • Duke JR, Bowers GH. Scope and sites of electronic health record systems. In: Lehman HP, Abbott PA, Roderer NK, et al., editors. Aspects of electronic health record systems. New York: Springer; 2006. p. 89–114.

    Google Scholar 

  • Fischetti L, Schloeffel P, Blair JS, Henderson ML. Standards. In: Lehmann HP, Abbott PA, Roderer NK, et al., editors. Aspects of Electronic Health Record Systems. New York: Springer; 2006. p. 252–82.

    Google Scholar 

  • Frawley WJ, Piatetsky-Shapito G, Matheus CJ. Knowledge discovery in databases: an overview. AI Magazine. 1992;13:57–70.

    Google Scholar 

  • Friedman C, Hripcsak G, Johnson SB, et al. A generalized relational schema for an integrated clinical patient database. Proc SCAMC. 1990:335–9.

    Google Scholar 

  • Fries JF. The chronic disease data bank: first principles to future directions. J Med Philos. 1984;9:161–89.

    Article  PubMed  CAS  Google Scholar 

  • Gabrieli ER. Standardization of medical informatics (special issue). J Clin Comput. 1985;14: 62–104.

    PubMed  CAS  Google Scholar 

  • Garfolo BT, Keltner L. A computerized disease register. Proc MEDINFO. 1983:909–12.

    Google Scholar 

  • Glichlich RE, Dreyer NA, eds. Registries for evaluating patient outcomes: a user’s guide. AHRQ Pub. # 07-EHC001-1. Rockville: Agency for Healthcare Research and Quality; 2007(Apr). p. 1–233.

    Google Scholar 

  • Graves J. Design of a database to support intervention modeling in nursing. Proc MEDINFO. 1986:240–2.

    Google Scholar 

  • Greenes RA, Papillardo AN, Marble CW, Barnett GO. Design and implementation of a clinical data management system. Comput Biomed Res. 1969;2:469–85.

    Article  PubMed  CAS  Google Scholar 

  • Grossman JH, Barnett GO, Koepsell TD, et al. An automated medical record system. JAMA. 1973;224:l6l6–1621.

    Article  Google Scholar 

  • Hammond WE, Stead WW, Feagin SJ, et al. Data base management system for ambulatory care. Proc SCAMC. 1977:173–87.

    Google Scholar 

  • Hammond WE, Stead WW, Straube MJ, Jelovsek FR. Functional characteristics of a computerized medical record. Methods Inf Med. 1980;19:157–62.

    PubMed  CAS  Google Scholar 

  • Hammond WE, Stead WW, Straube MJ. Planned networking for medical information systems. Proc SCAMC. 1985:727–31.

    Google Scholar 

  • Hlatky M. Using databases to evaluate therapy. Stat Med. 1991;10:647–52.

    Article  PubMed  CAS  Google Scholar 

  • Hripcsak G, Allen B, Cimino JJ, Lee R. Access to data: comparing AcessMed with Query by Review. J Am Med Inform Assoc. 1996;3:288–99.

    Article  PubMed  CAS  Google Scholar 

  • Huff SM. Clinical data exchange standards and vocabularies for messages. Proc AMIA. 1998:62–7.

    Google Scholar 

  • Johnson SB. Generic data modeling for clinical repositories. J Am Med Inform Assoc. 1996;3:328–39.

    Article  PubMed  CAS  Google Scholar 

  • Johnson SB. Extended SQL for manipulating clinical warehouse data. Proc AMIA. 1999:819–23.

    Google Scholar 

  • Kuznak PM, Kahane SN, Arsenlev M, et al. The role and design of an integrated clinical result database within a client-server networked hospital information system architecture. Proc SCAMC. 1987:789–95.

    Google Scholar 

  • Lindberg DAB. The growth of medical information systems in the United States. Lexington: Lexington Books; 1979.

    Google Scholar 

  • London JW. A computer solution to clinical and research computing needs. Proc SCAMC. 1985:722–26.

    Google Scholar 

  • Marrs KA, Kahn MG. Extending a clinical repository to include multiple sites. Proc AMIA. 1995:387–91.

    Google Scholar 

  • McCray AT, Sponsler JL, Brylawski B, Browne AC. The role of lexical knowledge in biomedical text understanding. Proc SCAMC. 1987:103–7.

    Google Scholar 

  • McDonald CJ. Standards for the transmission of diagnostic results from laboratory computers to office practice computers – an initiative. Proc SCAMC. 1983:123–4.

    Google Scholar 

  • McDonald CJ. Standards for the electronic transfer of clinical data: programs, promises, and the conductor’s wand. Proc SCAMC. 1990:09–14.

    Google Scholar 

  • McDonald CJ, Hammond WE. Standard formats for electronic transfer of clinical data. Editorial. Ann Intern Med. 1989;110:333–5.

    PubMed  CAS  Google Scholar 

  • McDonald CJ, Hripsak GH. Data exchange standards for computer-based patient records. In: Ball MF, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 157–64.

    Google Scholar 

  • McDonald CJ, Siu SL. The analysis of humongous databases: problems and promises. Stat Med. 1991;10:511–8.

    Article  PubMed  CAS  Google Scholar 

  • McDonald CJ, Wilson G, Blevins L, et al. The Regenstrief medical record system. Proc SCAMC. 1977a:168–9.

    Google Scholar 

  • McDonald CJ, Murray M, Jeris D, et al. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health. 1977b;67:240–5.

    Article  PubMed  CAS  Google Scholar 

  • McDonald CJ, Blevins L, Glazener T, et al. Data base management, feedback control and the Regenstrief medical record. Proc SCAMC. 1982:52–60.

    Google Scholar 

  • McDonald CJ, Blevens L, Tierney WM, Martin DK. The Regenstrief medical records. MD Comput. 1988:34–47.

    Google Scholar 

  • Michalski RS, Baskin AB, Spackman KA. A logic-based approach to conceptual database analysis. Proc SCAMC. 1982:792–6.

    Google Scholar 

  • Miller RA, Kapoor WN, Peterson J. The use of relational databases as a tool for conducting clinical studies. Proc SCAMC. 1983:705–8.

    Google Scholar 

  • Moorman PW, Schuemie MJ, van der Lei J. An inventory of publications on electronic medical records revisited. Methods Inf Med. 2009;48:454–8.

    Article  PubMed  CAS  Google Scholar 

  • Munoz F., Hersh W. MCM Generastors: a Java-based tool for generating medical metadata. Proc AMIA. 1998:648–52.

    Google Scholar 

  • Nadkarni PM, Cheung K. SQLGEN: a framework for rapid client-server database application development. Comput Biomed Res. 1995;28:479–99.

    PubMed  CAS  Google Scholar 

  • Nadkarni P, Marenco L. Easing the transition between attribute-value databases and conventional databases for scientific data. Proc AMIA. 2001:483–7.

    Google Scholar 

  • Nadkarni PM, Brandt C, Frawley S, et al. Managing attribute-value clinical trials data using ACT/DB client-server database system. J Am Med Inform Assoc. 1998;5:139–51.

    Article  PubMed  CAS  Google Scholar 

  • Nadkarni PM, Marenco L, Chen R, et al. Organization of heterogeneous scientific data using the EAV/CR representation. J Am Med Inform Assoc. 1999;6:478–93.

    Article  PubMed  CAS  Google Scholar 

  • Nadkarni PM, Brandt CM, Marenco L. WebEAV: automatic meta-driven generation of web interfaces to entity-attribute-value-databases. J Am Med Inform Assoc. 2000;7:343–56.

    Article  PubMed  CAS  Google Scholar 

  • Orthner HF. New communication technologies for integrating hospital information systems and their computer-based patient records, chap 11. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 176–200.

    Google Scholar 

  • Orthner HF. New communication technologies for hospital information systems. In: Bakker AR, Ball MJ, Scherrer JR, Willems JL, editors. Towards new hospital information systems. Amsterdam: North-Holland; 1998. p. 203–12.

    Google Scholar 

  • Pendse N. OLAP Omnipresent. Byte. 1998;111:751–6.

    Google Scholar 

  • Pendse N. Online analytical processing. Wikipedia. Retrieved in 2008. http://en.wikipedia:org/wiki/Online_analytical_processing.

    Google Scholar 

  • Pryor DB, Stead WW, Hammond WE, et al. Features of TMR for a successful clinical and research database. Proc SCAMC. 1982:79–83.

    Google Scholar 

  • Pryor TA, Gardner RM, Clayton PD, Warner HR. The HELP system. J Med Syst. 1983;7:87–102.

    Article  PubMed  CAS  Google Scholar 

  • Robson D. Object-oriented software system. Byte. 1981;6:74–86.

    Google Scholar 

  • Rothrock JJ. ASTM: the standards make the pieces fit. Proc AAMSI Congress. 1989:327–35.

    Google Scholar 

  • Rutt TE. Work of IEEE P1157 medical interchange committee. Proc AAMSI Congress. 1989:403–22.

    Google Scholar 

  • Safran C, Chute CG. Exploration and exploitation of clinical databases. Int J Biomed Comput. 1995;39:151–6.

    Article  PubMed  CAS  Google Scholar 

  • Simborg DW. Local area networks: why? what? what if? MD Comput. 1984;1:10–20.

    PubMed  CAS  Google Scholar 

  • Simborg DW. An emerging standard for health communications: the HL7 standard. Healthc Commun (HC&C). 1987;3:58–60.

    Google Scholar 

  • Smith B, Ceusters W. HL7 RIM: an incoherent standard. Stud Health Technol Inform. 2006;124:133–8.

    PubMed  Google Scholar 

  • Starr P. The social transformation of American medicine. New York: Basic Books; 1982.

    Google Scholar 

  • Stead WW, Hammond WE. Computer-based medical records: the centerpiece of TMR. MD Comput. 1988;5:48–61.

    PubMed  CAS  Google Scholar 

  • Stead WW, Wiederhold G, Gardner R, et al. Database systems for computer-based patient records. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 83–98.

    Google Scholar 

  • Taylor RW, Frank RL. CODASYL data base management systems. Comput Surv. 1976;8:67–103.

    Article  Google Scholar 

  • Terdiman J. Ambulatory care computer systems in office practice: a tutorial. Proc AMIA. 1982:195–201.

    Google Scholar 

  • Tolchin SG, Stewart RL. The distributed processing approach to hospital information processing. J Med Syst. 1981;5:345–60.

    Article  PubMed  CAS  Google Scholar 

  • Tolchin SG, Blum BI, Butterfield MA. A system analysis method for a decentralized health care information system. Proc SCAMC. 1980:1479–84.

    Google Scholar 

  • Tolchin SG, Simborg DW, Stewart RL, et al. Implementation of a prototype generalized network technology for hospitals. Proc SCAMC. 1981a:942–8.

    Google Scholar 

  • Tolchin SG, Stewart RL, Kahn SA, et al. A prototype generalized network technology for hospitals. J Med Syst. 1982;6:359–75.

    Article  PubMed  CAS  Google Scholar 

  • Tolchin SG, Barta W, Harkness K. The Johns Hopkins Hospital network. Proc SCAMC. 1985a:732–7.

    Google Scholar 

  • Tolchin SG, Arsenlev M, Barta WL, et al. Integrating heterogeneous systems using local network technologies and remote procedure call protocols. Proc SCAMC. 1985b:748–9.

    Google Scholar 

  • Tuck D, O’Connell R, Gershkovitch P, Cowan J. An approach to object-relational mapping in bioscience domains. Proc AMIA Symp. 2002:820–4.

    Google Scholar 

  • VanName ML, Catchings B. SQL: a database language sequel to dBase. Byte. 1989;14:175–82.

    Google Scholar 

  • Walters RF. Microprocessors as intelligent front-end devices for medical information systems. Med Inform. 1979;4:139–50.

    Article  CAS  Google Scholar 

  • Warner HR. Patient data file, chap 3. In: Computer-assisted medical decision-making. New York: Academic; 1979. p. 102–23.

    Google Scholar 

  • Warner HR. History of medical informatics at Utah. In: Blum BI, Duncan K, editors. A history of medical informatics. New York: Addison-Wesley Pub. Co; 1990. p. 357–66.

    Google Scholar 

  • Warner HR, Olmsted CM, Rutherford BD. HELP – a program for medical decision-making. Comput Biomed Res. 1972;5:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Warner HR, Morgan JD, Pryor TA, et al. HELP – a self-improving system for medical decision-making. Proc MEDINFO. 1974:989–93.

    Google Scholar 

  • Wasserman AI. Minicomputers may maximize data processing. Hospitals. 1977;51:119–28.

    PubMed  CAS  Google Scholar 

  • Wasserman AI. Interactive development environments for information systems. Proc SCAMC. 1986:316–25.

    Google Scholar 

  • Wess BP. Distributed computer networks in support of complex group practices. Proc SCAMC. 1978:469–77.

    Google Scholar 

  • Wiederhold G. Database technology in health care. J Med Syst. 1981;5:175–96.

    Article  PubMed  CAS  Google Scholar 

  • Wiederhold G. Databases for ambulatory care. Proc AMIA Symp. 1982:79–85.

    Google Scholar 

  • Wiederhold G. Modeling databases. Inf Sci. 1983;29:115–26.

    Article  Google Scholar 

  • Wiederhold G. Databases, A tutorial. Proc AAMSI. 1984:423–30.

    Google Scholar 

  • Wiederhold G, Fries GF, Weye S. Structural organization of clinical data bases. Proc AFIPS Conf. 1975;44:479–85.

    Google Scholar 

  • Wiederhold G, Walker MG, Blum RL, et al. Acquisition of medical knowledge from medical records. Proc Benutzer-gruppenseminar Med Syst. 1987:213–4.

    Google Scholar 

  • Zeichner ML, Brusil OJ, Tolchin SG. Distributed processing architecture for a hospital information system. Proc SCAMC. 1979:859–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Collen, M.F. (2012). The Development of Medical Databases. In: Computer Medical Databases. Health Informatics. Springer, London. https://doi.org/10.1007/978-0-85729-962-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-962-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-961-1

  • Online ISBN: 978-0-85729-962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics