Skip to main content

Abstract

In view of General Relativity, it is necessary to study physical fields, including solutions of the Dirac equation, in curved spacetimes. It is generally believed that the study of Riemannian (positive definite) metrics (infinitesimal distance functions) will ultimately be relevant to the more directly physical problem of Lorentz signature metrics, via principles of analytic continuation in signature. This adds impetus to the natural mathematical pursuit of studying spin structure, the Dirac operator, and other related operators on Riemannian manifolds. This lecture is a biased attempt at an introduction to this subject, with an emphasis on fundamental ideas likely to be important in future work, for example, Stein-Weiss gradients, Bochner-Weitzenböck formulas, the Hijazi inequality, and the Penrose local twistor idea. This provides at least a framework for the study of advanced topics such as spectral invariants and conformal anomalies, which are not treated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Avramidi and T. Branson, A discrete leading symbol and spectral asymptotics for natural differential operators, J. Funct. Anal. 190 (2002), 292–337.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. N. Bailey, M.G. Eastwood and A.R. Gover, The Thomas structure bundle for conformal, projective and related structures, Rocky Mountain Journal of Math. 24 (1994), 1–27.

    MathSciNet  Google Scholar 

  3. H. Baum, Spin-Strukturen und Dirac-Operatoren, her pseudo-Riemannsche Mannigfaltigkeiten, Teubner-Verlag, Leipzig, 1981.

    Google Scholar 

  4. H. Baum, T. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Teubner-Verlag, Stuttgart/Leipzig, 1991.

    Google Scholar 

  5. J.-P. Bourguignon, The magic of Weitzenböck formulas, in Variational Methods (Paris 1988), H. Berestycki, J.-M. Coron, I. Ekeland, eds., PNLDE, vol. 4, Birkhäuser, 1990, pp. 251–271.

    Google Scholar 

  6. J.-P. Bourguignon, O. Hijazi, J.-L. Milhorat, A. Moroianu, A Spinorial Approach to Riemannian and Conformal Geometry, Monograph (in preparation).

    Google Scholar 

  7. T. Branson, Intertwining differential operators for spinor-form representations of the conformal group, Advances in Math. 54 (1984), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), 199–291.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Branson, Nonlinear phenomena in the spectral theory of geometric linear differential operators, Proc. Symp. Pure Math. 59 (1996), 27–65.

    MathSciNet  Google Scholar 

  10. T. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334–383.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Branson, Spectra of self-gradients on spheres, J. Lie Theory 9 (1999), 491–506.

    MathSciNet  MATH  Google Scholar 

  12. T. Branson, Kato constants in Riemannian geometry, Math. Research Letters 7 (2000), 245–261.

    MathSciNet  MATH  Google Scholar 

  13. T. Branson and A.R. Gover, Form-tractors and a conformally invariant computation of cohomology, in preparation.

    Google Scholar 

  14. T. Branson and A.R. Gover, Spin-tractors, in preparation.

    Google Scholar 

  15. T. Branson and O. Hijazi, Vanishing theorems and eigenvalue estimates in Riemannian spin geometry, International J. Math. 8 (1997), 921–934.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Branson and O. Hijazi, Improved forms of some vanishing theorems in Riemannian spin geometry, International J. Math. 11 (2000), 291–304.

    MathSciNet  MATH  Google Scholar 

  17. T. Branson and O. Hijazi, Bochner-Weitzenböck formulas associated with the Rarita-Schwinger operator, International J. Math. 13 (2002), 137–182.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Branson, G. Ólafsson, and B. Ørsted, Spectrum generating operators, and inter-twining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal. 135 (1996), 163–205.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct Anal. 173 (2000), 214–255.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Calderbank, P. Gauduchon, and M. Herzlich, On the Kato inequality in Riemannian geometry, in Global Analysis and Harmonic Analysis (Marseille-Luminy, 1999), Séminaires & Congrès, Collection Société Mathématique de France, num. 4 (2000), eds. J.-P. Bourguignon, T. Branson, and O. Hijazi, pp. 95–113.

    Google Scholar 

  21. A. Čap, A.R. Gover, Tractor bundles for irreducible parabolic geometries, in Global Analysis and Harmonic Analysis (Marseille-Luminy, 1999), Séminaires & Congrès, Collection Société Mathématique de France, num. 4 (2000), eds. J.-P. Bourguignon, T. Branson, and O. Hijazi, pp. 129–154.

    Google Scholar 

  22. R. Delanghe, F. Sommen, and V. Soucek, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers, Dordrecht, 1992.

    Book  MATH  Google Scholar 

  23. M.G. Eastwood and J.W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Commun. Math. Phys. 109 (1987), 207–228. Erratum, Commun. Math. Phys. 144 (1992), p. 213.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Fegan, Conformally invariant first order differential operators, Quart. J. Math. (Oxford) 27 (1976), 371–378.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalar-krümmung, Math. Nachr. 97 (1980), 117–146.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    MATH  Google Scholar 

  27. O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys. 104 (1986), 151–162.

    Article  MathSciNet  MATH  Google Scholar 

  28. O. Hijazi and J-L. Milhorat, Twistor operators and eigenvalues of the Dirac operator on compact quaternionic spin manifolds, Ann. Global Anal. Geom. 2 (1997), 117–131.

    Article  MathSciNet  Google Scholar 

  29. N. Hitchin, Harmonic spinors, Adv. in Math. 14 (1974), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, 1972.

    Book  MATH  Google Scholar 

  31. K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal Geom. 3 (1986), 291–325.

    Article  MathSciNet  Google Scholar 

  32. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vols. I and II, Interscience, New York, 1963 and 1969.

    MATH  Google Scholar 

  33. W. Kramer, U. Semmelmann, and G. Weingart, The first eigenvalue of the Dirac operator on quaternionic Kähler manifolds, Commun. Math. Phys. 199 (1998), 327–349.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Lawson and M.-L. Michelson, Spin Geometry, Princeton University Press, 1989.

    Google Scholar 

  35. A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris 257 (1963), 7–9.

    MathSciNet  MATH  Google Scholar 

  36. B. Ørsted and I.E. Segal, A pilot model in two dimensions for conformally invariant particle theory, J. Funct. Anal 83 (1989), 150–184.

    Article  MathSciNet  Google Scholar 

  37. S. Paneitz, I.E. Segal, and D. Vogan, Analysis in space-time bundles IV: Natural bundles deforming into and composed of the same invariant factors as the spin and form bundles, J. Funct. Anal. 75 (1987), 1–57.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Penrose and W. Rindler, Spinors and Space-time, vols. 1,2, Cambridge University Press, Cambridge, 1984 and 1986.

    Book  Google Scholar 

  39. E. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math. 90 (1968), 163–196.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Strichartz, Linear algebra of curvature tensors and their covariant derivatives, Canad. J. Math. 40 (1988), 1105–1143.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Sulanke, Die Berechnung des Spektrums des Quadrates des Dirac-Operators auf der Sphäre, Doktorarbeit, Humboldt-Universität zu Berlin, 1979.

    Google Scholar 

  42. T.Y. Thomas, On conformal geometry, Proc. Natl. Acad. Sci. USA 12 (1926), 352–359.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Branson, T. (2004). Clifford Bundles and Clifford Algebras. In: Abłamowicz, R., Sobczyk, G. (eds) Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8190-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8190-6_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3257-1

  • Online ISBN: 978-0-8176-8190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics