Skip to main content

Open Problems in Euclidean Ramsey Theory

  • Chapter
  • First Online:
Ramsey Theory

Part of the book series: Progress in Mathematics ((PM,volume 285))

  • 1974 Accesses

Abstract

Ramsey theory is the study of structure that must exist in a system, most typically after it has been partitioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Ardal, J. Maňuch, M. Rosenfeld, S. Shelah, and L. Stacho, The odd-distance plane graph. Discrete Comput. Geom., 42 (2009), 132–141.

    Google Scholar 

  2. M. Benda and M. Perles, Colorings of metric spaces. Geombinatorics, 9 (2000), 113–126.

    Google Scholar 

  3. K. B. Chilakamarri, Some problems arising from unit–distance graphs. Geombinatorics, 4(4) (1995), 104–109.

    Google Scholar 

  4. K. B. Chilakamarri, On the chromatic number of rational five-space. Aequationes Mathematicae, 39 (1990), 146–148.

    Google Scholar 

  5. D. A. Coulson, A 15-coloring of 3-space omitting distance one, Discrete Math. 256 (2002), 83–90.

    Google Scholar 

  6. D. A. Coulson and M. S. Payne, A dense distance 1 excluding set in 3. Aust. Math. Soc. Gazette, 34 (2007), 97–102.

    Google Scholar 

  7. H. Croft, Incidence incidents. Eureka, 30 (1967), 22–26.

    Google Scholar 

  8. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey Theory I, J. Combin. Theor. Ser. A 14 (1973), 341–363.

    Google Scholar 

  9. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey Theory III, Infinite and finite sets Colloq., Keszthely (1973), Vol. I, pp. 559–583. Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.

    Google Scholar 

  10. P. Frankl and V. Rödl, A partition property of simplices in Euclidean space. J. Am. Math. Soc., 3 (1990), 1–7.

    Google Scholar 

  11. L. L. Ivanov, An estimate for the chromatic number of the space 4. Russ. Math. Surv., 61 (2006), 984–986.

    Google Scholar 

  12. L. L. Ivanov, On the chromatic numbers of 2 and 3 with intervals of forbidden distances. Electron. Notes Discrete Math., 29 (2007), 159–162.

    Google Scholar 

  13. V. Jelínek, J. Kynčl, R. Stolař, and T. Valla, Monochromatic triangles in two-colored plane. arXiv.math/0701940v1.

    Google Scholar 

  14. I. Křiž, Permutation groups in Euclidean Ramsey theory. Proc. Am. Math. Soc. 112 (1991), 899–907.

    Google Scholar 

  15. I. Křiž, All trapezoids are Ramsey. Discrete Math. 108 (1992), 59–62.

    Google Scholar 

  16. K. Kuratowski, Sur le problème des courbes gauches en topologie. Fund. Math. 15 (1930), 271–283.

    Google Scholar 

  17. O. Nechushtan, On the space chromatic number. Discrete Math., 256 (2002), 499–507.

    Google Scholar 

  18. P. O’Donnell, Arbitrary girth, 4-chromatic unit distance graphs in the plane. I. Graph description. Geombinatorics 9 (2000), 145–152.

    Google Scholar 

  19. P. O’Donnell, Arbitrary girth, 4-chromatic unit distance graphs in the plane. II. Graph embedding. Geombinatorics 9 (2000), 180–193.

    Google Scholar 

  20. A. M. Raǐgorodoskiǐ and I. M. Shitova, Chromatic numbers of real and rational spaces with real or rational forbidden distances. Sbornik: Math., 199(4), 579–612.

    Google Scholar 

  21. D. E. Raiskii, Realizing of all distances in a decomposition of the space n into n+1 parts. Zametki, 9 (1970), 319–323.

    Google Scholar 

  22. L. Shader, All right triangles are Ramsey in E 2! J. Comb. Theor., Ser. A, 20 (1976), 385–389.

    Google Scholar 

  23. A. Soifer, Chromatic number of the plane & its relatives. I. The problem & its history. Geombinatorics 12 (2003), 131–148.

    Google Scholar 

  24. A. Soifer, Chromatic number of the plane & its relatives. II. Polychromatic number & 6-coloring. Geombinatorics 12 (2003), 191–216.

    Google Scholar 

  25. A. Soifer, Chromatic number of the plane & its relatives. III. Its future. Geombinatorics 13 (2003), 41–46.

    Google Scholar 

  26. A. Soifer, The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators. Springer, New York, 2009.

    MATH  Google Scholar 

  27. E. G. Straus Jr., A combinatorial theorem in group theory, Math. Comp. 29 (1975), 303–309.

    Google Scholar 

  28. B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde 19 (1927), 212–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Graham, R., Tressler, E. (2011). Open Problems in Euclidean Ramsey Theory. In: Soifer, A. (eds) Ramsey Theory. Progress in Mathematics, vol 285. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8092-3_7

Download citation

Publish with us

Policies and ethics