Skip to main content

Information, Communication, and Group Theory

  • Chapter
  • First Online:
Stochastic Models, Information Theory, and Lie Groups, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 4340 Accesses

Abstract

Information theory, as it is known today, resulted from the confluence of two very different roots that had their origins in the first half of the 20th century. On the one hand, information theory originated from electrical engineers such as Hartley, Nyquist, and Shannon [49, 86, 104], who worked on the analysis of systems and strategies to communicate messages from one location to another. On the other hand, mathematicians such as de Bruijn, Cramér, Fisher, Kullbach, and Rao were inventing ideas in probability and statistics that have direct relevance to the study of information transmission. In this chapter the “communications” aspect of information theory is emphasized, whereas in Chapter 3 the “probability and statistics” side was reviewed. In recent years, the theory of finite groups has been connected with equalities in information theory. Lie groups enter as symmetry operations associated with continuous physical models of information transmission such as the linear telegraph equation and nonlinear soliton equations. Lie groups also appear as a domain in which stochastic trajectories evolve in the analysis of noise in optical communication systems that transmit information over fiber optic cables. In addition, some of the basic concepts and definitions in the theory of communication have interesting properties that are enriched by merging them with concepts from group theory. Some of this recent work will be explored here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alamouti, S.M., “A simple transmit diversity technique for wireless communications,” IEEE J. Select Areas Commun., 16(8), p. 1451, 1998.

    Article  Google Scholar 

  2. Ali, S.M., Silvey, S.D.,“A general class of coefficients of divergence of one distribution from another,” J. R. Statist. Soc. B, 28(1), pp. 131–140, 1966.

    MathSciNet  MATH  Google Scholar 

  3. Ambroladze, A., Wallin, H., “Random iteration of M¨obius transformations and Furstenberg’s theorem,” Ergodic Theory Dynam. Syst., 20(4), pp. 953–962, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, J.W., Hyperbolic Geometry, 2nd ed., Springer, New York, 2005

    Google Scholar 

  5. Anderson, R.L., Ibragimov, N.H., Lie-B¨acklund Transformations in Applications, SIAM, Philadelphia, 1987.

    Google Scholar 

  6. Arnold, D.N., Rogness, J., “M¨obius transformations revealed,” Notices AMS, 55(10), pp. 1226–1231, 2008.

    MathSciNet  MATH  Google Scholar 

  7. Ash, R.B., Information Theory, John Wiley and Sons, New York, 1965 (Dover edition, 1990).

    Google Scholar 

  8. Azizoglu, M., Humblet, P.A., “Envelope detection of orthogonal signals with phase noise,” J. Lightwave Technol., 9, pp. 1398–1410, 1991.

    Article  Google Scholar 

  9. Bachoc, C., Ben-Haim, Y., Litsyn, S., “Bounds for codes in products of spaces, Grassmann and Stiefel manifolds,” IEEE Trans. Inform. Theory, 54(3), pp. 1024–1035, 2008.

    Article  MathSciNet  Google Scholar 

  10. Balakrishnan, A.V., Communication Theory, McGraw-Hill Book Company, New York, 1968.

    Google Scholar 

  11. Barg, A., Nogin, D.Yu., “Bounds on packings of spheres in the Grassmann manifold,” IEEE Trans. Inform. Theory, 48(9), pp. 2450–2454, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  12. Barry, J.R., Lee, E.A., “Performance of coherent optical receivers”, Proc. IEEE, 78(8), pp. 1369–1394, 1990.

    Article  Google Scholar 

  13. Bluman, G.W., Temuerchaolu, Sahadevan, R., “Local and nonlocal symmetries for nonlinear telegraph equation,” J. Math. Phys., 46, 023505, 2005.

    Google Scholar 

  14. Bluman, G., Temeuerchaolu, “Conservation laws for nonlinear telegraph equations,” J. Math. Anal. Appl., 310, pp. 459–476, 2005.

    MathSciNet  MATH  Google Scholar 

  15. Bluman, G., Temuerchaolu, “Comparing symmetries and conservation laws of nonlinear telegraph equations,” J. Math. Phys., 46, 073513, 2005.

    Article  MathSciNet  Google Scholar 

  16. Bond, D.J., “The statistical properties of phase noise,” Br. Telecom. Technol. J., 7(4), pp. 12–17, 1989.

    Google Scholar 

  17. Chan, T.H., Yeung, R.W., “On a relation between information inequalities and group Theory,” IEEE Trans. Inform. Theory, 48(7), JULY 2002, pp. 1992–1995.

    Google Scholar 

  18. Chan, T.H., “Group characterizable entropy functions,” ISIT2007, Nice, France, June 24– 29, 2007, pp. 506–510.

    Google Scholar 

  19. Chirikjian, G.S., Kyatkin, A.B., Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  20. Cover, T.M., Thomas, J.A., Elements of Information Theory, John Wiley and Sons, New York, 2006.

    Google Scholar 

  21. Crooks, G.E., “Inequalities between the Jenson–Shannon and Jeffreys divergences,” http://threeplusone.com/pubs/technote/CrooksTechNote004.pdf.

    Google Scholar 

  22. Crutchfield, J., “Information and its metric,” in Nonlinear Structures in Physical Systems—Pattern Formation, Chaos and Waves, L. Lam, and H. Morris, eds., pp. 119– 130. Springer-Verlag, New York, 1990.

    Google Scholar 

  23. Csisz´ar, I., “Information-type measures of difference of probability distributions and indirect

    Google Scholar 

  24. observation,” Studia Sci. Math. Hungary., 2, pp. 229–318, 1967.

    Google Scholar 

  25. Da Rios, L.S., “Sul moto d’un liquido indefinito con un filetto vorticoso,” Rend. Circ. Mat. Palermo, 22, pp. 117–135, 1906.

    Article  MATH  Google Scholar 

  26. De Marchis, G., “Coherent communications,” Fiber Integrated Optics, 11, pp. 277–317, 1992.

    Article  Google Scholar 

  27. Drazin, P.G., Johnson, R.S., Solitons: An Introduction, 2nd ed., Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  28. Endres, D.M., Schindelin, J.E., “A new metric for probability distributions,” IEEE Trans. Inform. Theory, 49(7), pp. 1858–1860, 2003.

    Article  MathSciNet  Google Scholar 

  29. Escolano, F., Suau, P., Bonev, B., Information Theory in Computer Vision and Pattern Recognition, Springer, New York, 2009.

    Google Scholar 

  30. Fabeck, G., Mathar, R., “Chernoff information-based optimization of sensor networks for distributed detection,” in Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 606–611, December 14–17, 2009.

    Google Scholar 

  31. Fano, R.M., Transmission of information: a statistical theory of communications, MIT Press, Cambridge, MA, 1961.

    Google Scholar 

  32. Farlow, S.J., Partial Differential Equations for Scientists and Engineers, Dover, NewYork, 1993.

    Google Scholar 

  33. Feinstein, A., “A new basic theorem of information theory,” IEEE Trans. Inform. Theory, 4(4), pp. 2–22, 1954.

    Article  MathSciNet  Google Scholar 

  34. Field, T.R., Tough, R.J.A., “Diffusion processes in electromagnetic scattering generating K-distributed noise,” Proc. R. Soc. London A, 459, pp. 2169–2193, 2003.

    Article  MATH  Google Scholar 

  35. Foschini, G.J., Greenstein, L.J., Vannucci, G., “Noncoherent detection of coherent lightwave signals corrupted by phase noise,” IEEE Trans. Commun., 36, pp. 306–314, 1988.

    Article  Google Scholar 

  36. Foschini, G.J., Vannucci, G.,“Characterizing filtered light waves corrupted by phase noise,” IEEE Trans. Inform. Theory, 34(6), pp. 1437–1448, 1988.

    Article  Google Scholar 

  37. Foschini, G.J., Vannucci, G., Greenstein, L.J., “Envelope statistics for filtered optical signals corrupted by phase noise,” IEEE Trans. Commun., 37(12), pp. 1293–1302, 1989.

    Article  Google Scholar 

  38. Foschini, G., Gans, M., “On limits of wireless communications in fading environment when using multiple antennas,” Wireless Personal Commun., 6(6), pp. 315–335, 1998.

    Google Scholar 

  39. Franceschetti, M., Meester, R., Random Networks for Communication: From Statistical Physics to Information Systems, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  40. Furstenberg, H., Random Walks and Discrete Subgroups of Lie Groups, Advances in Probability and Related Topics Vol. 1, Marcel Dekker, New York, 1971, pp. 1–63.

    Google Scholar 

  41. Furstenberg, H., “Boundary theory and stochastic processes on homogeneous spaces,” in Harmonic Analysis on Homogeneous Spaces, Proc. Symp. Pure. Math. Vol. XXVI, Williams College, pp. 193–229, American Mathematical Soc. Providence, RI, 1973.

    Google Scholar 

  42. Garrett, I., Jacobsen, G., “Phase noise in weakly coherent systems,” IEEE Proc., 136, Pt. J, pp. 159–165, 1989.

    Google Scholar 

  43. Garrett, I., Bond, D.J., Waite, J.B., Lettis, D.S.L., Jacobsen, G., “Impact of phase noise in weakly coherent systems: a new and accurate approach,” J. Lightwave Technol., 8(3), pp. 329–337, 1990.

    Article  Google Scholar 

  44. Gertsenshtein, M.E., Vasil’ev, V.B., “Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane,” Theory Prob. Appl., 4(4), pp. 391–398, 1959.

    Google Scholar 

  45. Gertsenshtein, M.E., Vasilev, V.B., “Diffusion equations for statistically inhomogeneous waveguides,” Radiotekhn. Electron., IV, 4, p. 611, 1959. (English translation, Radio Engineering and Electronics).

    Google Scholar 

  46. Gray, R.M., Entropy and Information Theory, 2nd ed., Springer-Verlag, New York, 2011.

    Google Scholar 

  47. Gromov, M., Hyperbolic Groups: Essays in Group Theory, pp. 75–263, Springer, New York, 1987.

    Google Scholar 

  48. Hammer, D., Romashchenko, A., Shen, A., Vereshchagin, N., “Inequalities for Shannon entropy and Kolmogorov complexity,” J. Comput. Syst. Sci., 60, pp. 442–464, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  49. Hamming, R.W., Coding and Information Theory, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1986.

    Google Scholar 

  50. Hartley, R., “Transmission of information,” Bell Syst. Tech. J., pp. 535–563, 1928.

    Google Scholar 

  51. Hasegawa, A., Matsumoto, M., Optical Solitons in Fibers, 3rd ed., Springer, New York, 2003.

    Google Scholar 

  52. Hasimoto, H., “A soliton on a vortex filament,” J. Fluid Mech., 51, pp. 477–485, 1972.

    Article  MATH  Google Scholar 

  53. Hassibi, B.,Marzetta, T.L., “Multiple-antennas and isotropically-random unitary inputs: The received signal density in closed-form,” IEEE Trans. Inform. Theory, 48(6), pp. 1473– 1484, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  54. Hassibi, B., “Random Matrices, Integrals and Space-time Systems,” DIMACS Workshop on Algebraic Coding and Information Theory, December 15–18, 2003.

    Google Scholar 

  55. Hayashi, M., Quantum Information: An Introduction, Springer, Berlin, 2006.

    Google Scholar 

  56. Heinzel, H.-G., Dambach, M., “Travelling air vortex rings as potential communication signals in a cricket,” J. Comp. Physiol. A: Neuroethol., Sensory Neural Behav. Physiol., 160(1), pp. 79–88, 1987.

    Google Scholar 

  57. Helgason, S., Groups and Geometric Analysis, Mathematical Surveys and Monographs Vol. 83, American Mathematical Society, Providence, RI, 1984.

    Google Scholar 

  58. Hendricks, H., “A Cram´er–Rao type lower bound for estimators with values in a manifold,” J. Multivariate Anal., 38, pp. 245–261, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  59. Henry, C.H., “Theory of linewidth of semiconductor lasers,” IEEE J. Quantum Electron., pp. 259–264, 1982.

    Google Scholar 

  60. Herstein, I.N., Topics in Algebra, John Wiley and Sons, New York, 1975.

    Google Scholar 

  61. Hirota, R., The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  62. Ikeda, N., Matsumoto, H., “Brownian motion on the hyperbolic plane and Selberg trace formula,” J. Funct. Analy., 163(1), pp. 63–110, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  63. Ingleton, A.W., “Representation of matroids,” in Combinatorial mathematics and Its Applications, D. Welsh, ed., pp. 149–167. Academic Press, London, 1971.

    Google Scholar 

  64. Jacobsen, G., Noise in Digital Optical Transmission Systems, Artech House, Boston, 1994.

    Google Scholar 

  65. Janssen, A., Siebert, E., “Convolution semigroups and generalized telegraph equations,” Math. Zeitschr., 177(4), pp. 519–532, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  66. Jones, D.S., Elementary Information Theory, Clarendon Press, Oxford, England, 1979.

    Google Scholar 

  67. Karpelevich, F.I., Tutubalin, V.N. and Shur, M.G. “Limit theorems for the composition of

    Google Scholar 

  68. distributions in the Lobachevsky plane and space,” Theory Probab. Appl., 4(4), pp. 399– 401, 1959.

    Google Scholar 

  69. Kazovsky, L.G., Benedetto, S., Willner, A.E., Optical Fiber Communication Systems, Artech House, Boston, 1996.

    Google Scholar 

  70. Kolmogorov, A.N., “Logical basis for information theory and probability theory,” IEEE Trans. Inform. Theory, 14(5), pp. 662–664, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  71. Kolmogorov, A.N., “Three approaches to the definition of the concept quantity of information,” Probl. Peredachi Inf., 1(1), p. 3–11, 1965.

    MathSciNet  MATH  Google Scholar 

  72. Kornreich, P., Mathematical Models of Information and Stochastic Systems, CRC Press/Taylor and Francis, Boca Raton, FL, 2008.

    Google Scholar 

  73. Lamb, G.L. Jr., “Solitons on moving space curves,” J. Math. Phys., 18, pp. 1654–1661, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  74. Lamb, G.L. Jr., Elements of Soliton Theory, John Wiley and Sons, New York, 1980.

    Google Scholar 

  75. Leach, P.G.L., “Symmetry and singularity properties of a system of ordinary differential equations arising in the analysis of the nonlinear telegraph equations,” J. Math. Anal. Applic., 336(2), pp. 987–994, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  76. Lee, J.M., Riemannian Manifolds: An Introduction to Curvature, Springer, New York, 1997.

    Google Scholar 

  77. Li, H., Chong, E.K.P., “On connections between group homomorphisms and the Ingleton inequality,” ISIT2007, Nice, France, June 24–29, 2007, pp. 1996–1999.

    Google Scholar 

  78. Li, H., Chong, E.K.P., “On a connection between information and group lattices,” Entropy, 13(3), pp. 683–708, 2011.

    Article  MathSciNet  Google Scholar 

  79. Liese, F., Vajda, I. “On divergences and informations in statistics and information theory,” IEEE Trans. Inform. Theory, 52(10), pp. 4394–4412, 2006.

    Article  MathSciNet  Google Scholar 

  80. Linke, R.A., Henry, P.S., “Coherent optical detection: A thousand calls on one circuit,” IEEE Spetrum, 24(2), pp. 52–57, 1987.

    Google Scholar 

  81. MacKay, D.J.C., Information Theory, Inference, and Learning Algorithms, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  82. Miller, G.A., “Groups which are the products of two permutable proper sub-groups,” PNAS, 21, pp. 469–472, 1935.

    Article  MATH  Google Scholar 

  83. Mollenauer, L.F., Gordon, J.P., Solitons in Optical Fibers, Elsevier Academic Press, Amsterdam, 2006.

    Google Scholar 

  84. Nehari, Z., Conformal Mapping, Dover Publications, New York, 1975 (original published by McGraw Hill, 1952).

    Google Scholar 

  85. Nielsen, M.A., Chuang, I.L., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  86. Nordbrock, U., Kienzler, R., “Conservation laws—a simple application to the telegraph equation,” J. Comput. Electron., 7(2), pp. 47–41, 2008.

    Article  Google Scholar 

  87. Nikulin, V.V., Shafarevich, I.R., Geometries and Groups, M. Reid, transl., Springer, New York, 2009.

    Google Scholar 

  88. Nyquist, H., “Certain factors affecting telegraph speed,” Bell Syst. Tech. J., 3, pp. 324– 346, 1924

    Google Scholar 

  89. Nyquist, H., “Certain topics in telegraph transmission theory,” AIEE Trans., 47, pp. 617– 644, 1928.

    Google Scholar 

  90. Ody, M.S., Common, A.K., Sobhy, M.I., “Continuous symmetries of the discrete nonlinear telegraph equation,” Eur. J. Appl. Math., 10(3), pp. 265–284, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  91. ¨ Osterreicher, F., Vajda, I., “A new class of metric divergences on probability spaces and its applicability in statistics,” Ann. Inst. Statist. Math., 55(3), pp. 639–653, 2003.

    Google Scholar 

  92. Papanicolaou, G.C., “Wave propagation in a one-dimensional random medium,” SIAM J. Appl. Math., 21, pp. 13–18, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  93. Pierce, J.R., An Introduction to Information Theory: Symbols, Signals and Noise, 2nd ed., Dover Publications, New York, 1980.

    Google Scholar 

  94. Pinsky, M.A., Introduction to Partial Differential Equations with Applications, McGraw- Hill Book Company, New York, 1984.

    Google Scholar 

  95. Primak, S., Kontorovich, V., Lyandres, V., Stochastic Methods and Their Applications to Communications, John Wiley and Sons, New York, 2004.

    Google Scholar 

  96. Rappaport, T.S., Wireless Communications Principles and Practice, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 2002.

    Google Scholar 

  97. Ratnarajah, T., Vaillancourt, R., Alvo, M., “Complex random matrices and Rayleigh channel capacity,” Commun. Inform. Syst., pp. 119–138, 2003.

    Google Scholar 

  98. Ren, W., Beard, R., Atkins, E., “Information consensus in multivehicle cooperative control,” IEEE Control Syst. Mag., pp. 71–82, 2007.

    Google Scholar 

  99. R´enyi, A., “On measures of information and entropy,” Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1960, pp. 547–561, 1961.

    Google Scholar 

  100. Reza, F.M., An Introduction to Information Theory, Dover Publications, New York, 1994 (originally published by McGraw-Hill, 1961).

    Google Scholar 

  101. Rogers, C., Schief, W.K., B¨acklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  102. Scharf, L.L., McWhorter, L.T., “Geometry of the Cramer–Rao bound,” Signal Process. 31(3), pp. 1–11 (1993); reprinted in Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, H.L. Van Trees and K. Bell, eds., John Wiley and Sons, New York, 2007.

    Google Scholar 

  103. Scharf, L.L., Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, Addison-Wesley, New York, 1990.

    Google Scholar 

  104. Seshadri, R., Na, T.Y., Group Invariance in Engineering Boundary Value Problems, Springer-Verlag, New York, 1985.

    Google Scholar 

  105. Sengupta, A.M., Mitra, P.P., “Capacity of multivariate channels with multiplicative noise: I. Random matrix techniques and large-N expansions for full transfer matrices,”http://arxiv.org/abs/physics/0010081.

    Google Scholar 

  106. Shannon, C.E.,Weaver, W., The Mathematical Theory of Communication, TheUniversity of Illinois Press, Urbana, 1949.

    Google Scholar 

  107. Shannon, C.E., “Communication in the presence of noise,” Proc. Inst. Radio Eng., 37(1), pp. 10–21, 1949.

    MathSciNet  Google Scholar 

  108. Silverstein, J.W., Combettes, P.L., “Signal detection via spectral theory of large dimensional random matrices,” IEEE Trans. Signal Process., 40, pp. 2100–2105, 1992.

    Article  Google Scholar 

  109. Smith, S.T., Scharf, L.L., McWhorter, L.T., “Intrinsic quadratic performance bounds on manifolds,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2006), Toulouse, France, May 14–19, 2006, pp. V-1013–V-1016.

    Google Scholar 

  110. Spiegel, M.R., Complex Variables, Schaum’s Outline Series in Mathematics, McGraw-Hill Book Company, New York, 1964.

    Google Scholar 

  111. Stahl, S., A Gateway to Modern Geometry: The Poincar´e Half-Plane, 2nd ed., Jones & Bartlett Publishers, Subburg, MA, 2007.

    Google Scholar 

  112. Suzuki, N., Biyajima, M., “Analytic solution for Brownian motion in three dimensional hyperbolic space,” http://arxiv.org/abs/math-ph/0406040.

    Google Scholar 

  113. Sym, A., “Soliton surfaces,” Lett. Nuovo Cimento 33(12), pp. 394–400, 1982 (see also others in this series, including Sym, A., “Soliton surfaces V: Geometric theory of loop solitons,” Lett. Nuovo Cimento 41(2), pp. 33–44, 1984.)

    Google Scholar 

  114. Tomkos, I., Roudas, I., Hesse, R., Antoniades, N., Boskovic, A., Vodhanel, R., “Extraction of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks”, Optics Commun., 194(1–3), pp. 109–129, 2001.

    Article  Google Scholar 

  115. Topsoe, F., “Some inequalities for information divergence and related measures of discrimination,” IEEE Trans. Inform. Theory, 46(4), pp. 1602–1609, 2002.

    Article  MathSciNet  Google Scholar 

  116. Tron, R., Vidal, R., Terzis, A., “Distributed pose averaging in camera networks via consensus on SE(3),” Proceedings of the Second ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2008, pp. 1–10, Stanford, CA, September 7–11, 2008.

    Google Scholar 

  117. Tsallis, C., “Possible generalization of Boltzmann–Gibbs statistics,” J. Statist. Phys., 52, pp. 479–487, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  118. Tse, D., Viswanath, P., Fundamentals of Wireless Communication, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  119. Tutubalin, V.N., “On random walk in the Lobachevsky plane,” Theory Probab. Appl., 13, pp. 487–490, 1968.

    Article  MATH  Google Scholar 

  120. Tutubalin, V.N., “On the limit behavior of compositions of measures in the plane and space of Lobachevsky,” Theory Probab. Applic., 7, pp. 189–196, 1962.

    Article  Google Scholar 

  121. Tulino, A.M., Verd´u, S., Random Matrix Theory and Wireless Communications, Now Publishers, Boston, 2004.

    Google Scholar 

  122. Waite, J.B., Lettis, D.S.L., “Calculation of the properties of phase noise in coherent optical receivers,” Br. Telecommun. Technol. J., 7(4), pp. 18–26, 1989.

    Google Scholar 

  123. Wang, Y., Zhou, Y., Maslen, D.K., Chirikjian, G.S., “Solving the phase-noise Fokker– Planck equation using the motion-group Fourier transform,” IEEE Trans. Commun., 54(5), pp. 868–877, 2006.

    Article  Google Scholar 

  124. Wiener, N., Cybernetics: or Control and Communication in the Animal and Machine, MIT Press, Cambridge, MA, 1948 and 1961.

    Google Scholar 

  125. Yazici, B., “Stochastic deconvolution over groups,” IEEE Trans. Inform. Theory, 50(3), pp. 494–510, 2004.

    Article  MathSciNet  Google Scholar 

  126. Younes, L., Qiu, A., Winslow, R.L., Miller, M.I., “Transport of relational structures in groups of diffeomorphisms,” J. Math. Imaging Vision, 32, pp. 41–56, 2008.

    Article  MathSciNet  Google Scholar 

  127. Zhang, J., Rangarajan, A., “Affine image registration using a new information metric,” CVPR’04, Vol. 1, pp. 848–855, Washington DC, 2004.

    Google Scholar 

  128. Zhang, W., Lai, Y.C., Williams, J.A.R., Lu, C., Zhang, L., Bennion, I., “A fibre grating DFB laser for generation of optical microwave signal,” Optics Laser Technol., 32(5), pp. 369–371, 2000.

    Article  Google Scholar 

  129. Zhang, X., “Analytically solving the Fokker–Planck equation for the statistical characterization of the phase noise in envelope detection,” J. Lightwave Technol., 13(8), pp. 1787– 1794, 1995.

    Article  Google Scholar 

  130. Zhang, Z., Yeung, R.W., “On the characterization of entropy function via information inequalities,” IEEE Trans. Inform. Theory, 44, pp. 1440–1452, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  131. Zabusky, N.J., Kruskal, M.D., “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett., 15(6), pp. 240–243, 1965.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chirikjian, G.S. (2012). Information, Communication, and Group Theory. In: Stochastic Models, Information Theory, and Lie Groups, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4944-9_8

Download citation

Publish with us

Policies and ethics