Skip to main content

Yang–Mills Theory and a Superquadric

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 270))

Summary

We construct a real-analytic CR supermanifold \(\mathcal{R}\), holomorphically embedded into a superquadric \(\mathcal{Q}\subset {\mathbf{ P}}^{3\vert 3} \times {\mathbf{ P}}^{{_\ast}3\vert 3}\). A CR distribution \(\mathcal{F}\) on \(\mathcal{R}\) enables us to define a tangential CR complex \(\left ({\Omega }_{\mathcal{F}}^{\bullet },\bar{\partial }\right )\).We define a \(\bar{\partial }\)-closed trace functional \(\int \nolimits \nolimits : {\Omega }_{\mathcal{F}}^{\bullet }\rightarrow \mathbb{C}\) and conjecture that a Chern-Simons theory associated with a triple \(\left ({\Omega }_{\mathcal{F}}^{\bullet }\otimes {\mathrm{Mat}}_{n},\bar{\partial },\int \nolimits \nolimits \ \mathrm{tr}\right )\) is equivalent to N = 3, D = 4 Yang–Mills theory with a gauge group U(n). We give some evidences to this conjecture.

2000 Mathematics Subject Classifications: 53C80, 53C28, 81R25, 32C11, 58C50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Atiyah, N. J. Hitchin, V. G. Drinfel’d, Yu. I. Manin, Construction of instantons Phys. Lett. A 65 (1978), no. 3, 185–187.

    Article  MathSciNet  Google Scholar 

  2. N. Berkovits, Covariant Quantization of the Superparticle Using Pure Spinors JHEP 0109 (2001) 016, hep-th/0105050.

    Article  MathSciNet  Google Scholar 

  3. P. Deligne, J. S. Milne, Tannakian categories, in Hodge cycles, motives and Shimura varieties, LNM 900, 101–228.

    Google Scholar 

  4. P. Deligne, J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), 4197, Amer. Math. Soc., Providence, RI, 1999.

    Google Scholar 

  5. J. Frauendiener, R. Penrose, Twistors and general relativity. Mathematics unlimited—2001 and beyond, 479–505, Springer, Berlin, 2001.

    Google Scholar 

  6. Ph. Griffiths, J. Harris, Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, John Wiley & Sons, New York, 1978. xii+813 pp.

    MATH  Google Scholar 

  7. C. Haske, R. O. Wells, Jr., Serre duality on complex supermanifolds Duke Math. J. 54, no. 2 (1987), 493–500.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Ishibashi, H. Kawai, I. Kitazawa, A. Tsuchiya, A large-N reduced model as superstring Nucl. Phys. B492 (1997).

    Google Scholar 

  9. T. Kadeishvili, The algebraic structure in the homology of anA -algebra Soobshch. Akad. Nauk Gruzin. SSR, 1982.

    Google Scholar 

  10. Yu. I. Manin, Gauge field theory and complex geometry Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  11. M. Markl, TransferringA (strongly homotopy associative) structures math.AT/0401007.

    Google Scholar 

  12. L. J. Mason, D. Skinner, An ambitwistor Yang-Mills Lagrangian Phys. Lett. B636 (2006) 60–67, hep-th/0510262.

    Google Scholar 

  13. M. Movshev, Yang–Mills theory and a superquadric hep-th/0411111.

    Google Scholar 

  14. M. Movshev, A. Schwarz, On maximally supersymmetric Yang–Mills theories Nuclear Physics B, 681, no. 3, 324–350.

    Google Scholar 

  15. M. Movshev, A. Schwarz, Algebraic structure of Yang–Mills theory, The Unity of Mathematics, 473–523, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, hep-th/0404183.

    Google Scholar 

  16. A. Schwarz, Semiclassical approximation in Batalin–Vilkovisky formalism Commun. Math. Phys. 158 (1993) 373–396, hep-th/9210115.

    Article  Google Scholar 

  17. A. Schwarz, Topological quantum field theories hep-th/0011260.

    Google Scholar 

  18. V. V. Serganova, Classification of simple real Lie superalgebras and symmetric superspaces (Russian) Funktsional. Anal. i Prilozhen. 17 (1983) no. 3, 46–54.

    MathSciNet  Google Scholar 

  19. F. Pellegrini, On real forms of complex Lie superalgebras and complex algebraic supergroups math.RA/0311240.

    Google Scholar 

  20. R. Penrose, Twistor theory after 25 years—its physical status and prospects. Twistors in mathematics and physics London Math. Soc. Lecture Note Ser., 156, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  21. E. Witten, An interpretation of classical Yang–Mills theory preprint HUTP-78/A009.

    Google Scholar 

  22. E. Witten, Gauge theory as a string theory in twistor space, hep-th/0312171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Movshev .

Editor information

Editors and Affiliations

Additional information

Dedicated to Yu. I. Manin on his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Movshev, M.V. (2009). Yang–Mills Theory and a Superquadric. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 270. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4747-6_11

Download citation

Publish with us

Policies and ethics