Skip to main content

Optical Imaging of Cancer: Neuro-oncologic Applications

  • Chapter
  • First Online:
Optical Imaging of Cancer
  • 716 Accesses

Abstract

Tumors of the central nervous system (CNS) present unique challenges to the clinician with respect to diagnosis and therapeutics. Location of the tumors within the brain confined by the calvaria and the complex boney architecture of the skull base also present difficulty in efficiently imaging lesions especially in computer tomographic (CT) imaging of lesions in the posterior fossa. The most common central nervous system (CNS) tumors are metastatic lesions that arise from tumors elsewhere in the body, of which lung and breast primaries constitute a large proportion. Primary brain tumors, those that arise from cellular constituents residing within the brain such as glial cells and neurons, are particularly vexing in both diagnosis and treatment improvements in imaging technology with the combined use of neurophysiological monitoring have lead to more aggressive surgical resections of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12846–51.

    Article  CAS  PubMed  Google Scholar 

  • Arwert E, Hingtgen S, Figueiredo JL, Bergquist H, Mahmood U, Weissleder R, et al. Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res. 2007 Aug 1;67(15):7335–42.

    Article  CAS  PubMed  Google Scholar 

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, et al. Epidermal growth factor receptor and Ink4a/Arf: governing terminal differentiation and transformation stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269–77.

    Article  CAS  PubMed  Google Scholar 

  • Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, et al. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med. 2007 Jun;39(5):386–93.

    Article  PubMed  Google Scholar 

  • Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, et al. Gene therapy of experimental brain tumors using neural progenitor. Nat Med. 2000;6(4):447–50.

    Article  CAS  PubMed  Google Scholar 

  • Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc. 2005 May;218(Pt 2):133–47.

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):377–82.

    Article  CAS  PubMed  Google Scholar 

  • Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer. 2008 Feb;8(2):94–107.

    Article  CAS  PubMed  Google Scholar 

  • Burgos JS, Rosol M, Moats RA, Khankaldyyan V, Kohn DB, Nelson MD, Jr., et al. Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques. 2003 Jun;34(6):1184–8.

    CAS  PubMed  Google Scholar 

  • Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res. 2004 Nov 1;64(21):8009–14.

    Article  CAS  PubMed  Google Scholar 

  • Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, et al. Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg. 2007 Sep;107(3):610–6.

    Article  CAS  PubMed  Google Scholar 

  • Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res. 2002;62(20):5657–63.

    CAS  PubMed  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004 Aug;22(8):969–76.

    Article  CAS  PubMed  Google Scholar 

  • Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A. 2000;97(12):6242–4.

    Article  CAS  PubMed  Google Scholar 

  • Hsu AR, Hou LC, Veeravagu A, Greve JM, Vogel H, Tse V, et al. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol. 2006 Nov-Dec;8(6):315–23.

    Article  PubMed  Google Scholar 

  • Jackson H, Muhammad O, Daneshvar H, Nelms J, Popescu A, Vogelbaum MA, et al. Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery. 2007 Mar;60(3):524–9; discussion 9-30.

    Article  PubMed  Google Scholar 

  • Jacobs AH, Kracht LW, Gossmann A, Ruger MA, Thomas AV, Thiel A, et al. Imaging in neurooncology. NeuroRx. 2005 Apr;2(2):333–47.

    Article  PubMed  Google Scholar 

  • Kemper EM, Leenders W, Kusters B, Lyons S, Buckle T, Heerschap A, et al. Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies. Eur J Cancer. 2006 Dec;42(18):3294–303.

    Article  CAS  PubMed  Google Scholar 

  • Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr Neurol Neurosci Rep. 2005 May;5(3):186–97.

    Article  CAS  PubMed  Google Scholar 

  • Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008 Mar;7(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  • Lin WC, Mahadevan-Jansen A, Johnson MD, Weil RJ, Toms SA. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery. 2005 Sep;57(3):518–25; discussion-25.

    Article  PubMed  Google Scholar 

  • Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006;1:97–117.

    Article  CAS  PubMed  Google Scholar 

  • Lyons MK, Vora SA. Brain tumors: current issues in diagnosis and management. Semin Neurol. 2007 Sep;27(4):312–24.

    Article  PubMed  Google Scholar 

  • Madsen S, Hirschberg H. Photodynamic therapy and detection of high-grade gliomas. J Environ Pathol Toxicol Oncol. 2006;25(1–2):453–66.

    PubMed  Google Scholar 

  • Mahmood U, Weissleder R. Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther. 2003 May;2(5):489–96.

    CAS  PubMed  Google Scholar 

  • Majumder SK, Gebhart S, Johnson MD, Thompson R, Lin WC, Mahadevan-Jansen A. A probability-based spectroscopic diagnostic algorithm for simultaneous discrimination of brain tumor and tumor margins from normal brain tissue. Appl Spectrosc. 2007 May;61(5):548–57.

    Article  CAS  PubMed  Google Scholar 

  • Mannino S, Molinari A, Sabatino G, Ciafre SA, Colone M, Maira G, et al. Intratumoral vs systemic administration of meta-tetrahydroxyphenylchlorin for photodynamic therapy of malignant gliomas: assessment of uptake and spatial distribution in C6 rat glioma model. Int J Immunopathol Pharmacol. 2008 Jan–Mar;21(1):227–31.

    CAS  PubMed  Google Scholar 

  • Messerli SM, Prabhakar S, Tang Y, Shah K, Cortes ML, Murthy V, et al. A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Neoplasia. 2004 Mar-Apr;6(2):95–105.

    Article  CAS  PubMed  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005 Jan 28;307(5709):538–44.

    Article  CAS  PubMed  Google Scholar 

  • Moore GE, Peyton WT, French LA. The clinical use of fluorescein in neurosurgery. The localization of brain tumors. J Neurosurg. 1948;5:392–8.

    Article  CAS  PubMed  Google Scholar 

  • Muhammad O, Popescu A, Toms SA. Macrophage-mediated colocalization of quantum dots in experimental glioma. Methods Mol Biol. 2007;374:161–71.

    PubMed  Google Scholar 

  • Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005 Mar;23(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 2005 Nov;19(13):1839–41.

    CAS  Google Scholar 

  • Okuda T, Kataoka K, Taneda M. Metastatic brain tumor surgery using fluorescein sodium: technical note. Minim Invasive Neurosurg. 2007 Dec;50(6):382–4.

    Article  CAS  PubMed  Google Scholar 

  • Popescu MA, Toms SA. In vivo optical imaging using quantum dots for the management of brain tumors. Expert Rev Mol Diagn. 2006 Nov;6(6):879–90.

    Article  CAS  PubMed  Google Scholar 

  • Price SJ. The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg. 2007 Dec;21(6):562–75.

    Article  PubMed  Google Scholar 

  • Scherer HJ. The forms of growth in gliomas and their practical significance. Brain. 1940;63:1–35.

    Article  Google Scholar 

  • Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R, et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol. 2005 Jan;57(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A, et al. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci. 2008 Apr 23;28(17):4406–13.

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Tang Y, Breakefield X, Weissleder R. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene. 2003 Oct 9;22(44):6865–72.

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Weissleder R. Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx. 2005 Apr;2(2):215–25.

    Article  PubMed  Google Scholar 

  • Soling A, Theiss C, Jungmichel S, Rainov NG. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma. Genet Vaccines Ther. 2004 Aug 4;2(1):7.

    Article  PubMed  Google Scholar 

  • Stefflova K, Chen J, Zheng G. Using molecular beacons for cancer imaging and treatment. Front Biosci. 2007a;12:4709–21.

    Article  CAS  PubMed  Google Scholar 

  • Stefflova K, Chen J, Zheng G. Killer beacons for combined cancer imaging and therapy. Curr Med Chem. 2007b;14(20):2110–25.

    Article  CAS  PubMed  Google Scholar 

  • Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol. 2008 Mar;87(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  • Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma – a review. Part II – clinical studies. J Clin Neurosci. 2006 Aug;13(7):709–17.

    Article  CAS  PubMed  Google Scholar 

  • Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8602–6.

    Article  CAS  PubMed  Google Scholar 

  • Szentirmai O, Baker CH, Lin N, Szucs S, Takahashi M, Kiryu S, et al. Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery. 2006 Feb;58(2):365–72; discussion -72.

    Article  PubMed  Google Scholar 

  • Tamura Y, Kuroiwa T, Kajimoto Y, Miki Y, Miyatake S, Tsuji M. Endoscopic identification and biopsy sampling of an intraventricular malignant glioma using a 5-aminolevulinic acid-induced protoporphyrin IX fluorescence imaging system. Technical note. J Neurosurg. 2007 Mar;106(3):507–10.

    Article  PubMed  Google Scholar 

  • Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther. 2003 Sep 1;14(13):1247–54.

    Article  CAS  PubMed  Google Scholar 

  • Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, et al. Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study. Brain Tumor Pathol. 2007;24(2):53–5.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Cong W, Shen H, Qian X, Henry M, Wang Y. Overview of bioluminescence tomography – a new molecular imaging modality. Front Biosci. 2008;13:1281–93.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yong WH, Sun Y, Vernier PT, Koeffler HP, Gundersen MA, et al. Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J Biomed Opt. 2007 Jul–Aug;12(4):044021.

    Article  PubMed  Google Scholar 

  • Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008 Apr 3;452(7187):580–9.

    Article  CAS  PubMed  Google Scholar 

  • Wessels JT, Busse AC, Mahrt J, Dullin C, Grabbe E, Mueller GA. In vivo imaging in experimental preclinical tumor research – a review. Cytometry A. 2007 Aug;71(8):542–9.

    CAS  PubMed  Google Scholar 

  • Winkeler A, Sena-Esteves M, Paulis LE, Li H, Waerzeggers Y, Ruckriem B, et al. Switching on the lights for gene therapy. PLoS ONE. 2007;2(6):e528.

    Article  PubMed  Google Scholar 

  • Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2(5):1152–65.

    Article  CAS  PubMed  Google Scholar 

  • Yip S, Sabetrasekh R, Sidman RL, Snyder EY. Neural stem cells as novel cancer therapeutic vehicles. Eur J Cancer. 2006 May 11.

    Article  Google Scholar 

  • Zacharakis G, Kambara H, Shih H, Ripoll J, Grimm J, Saeki Y, et al. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18252–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yip, S., Shah, K. (2010). Optical Imaging of Cancer: Neuro-oncologic Applications. In: Rosenthal, E., Zinn, K. (eds) Optical Imaging of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93874-5_12

Download citation

Publish with us

Policies and ethics