Skip to main content

Somatic Genetic Alterations and Implications for Targeted Therapies in Cancer (GIST, CML, Lung Cancer)

  • Chapter
  • First Online:
Principles of Clinical Cancer Genetics
  • 1313 Accesses

Abstract

The last decade has witnessed tremendous advances in the treatment of patients with cancer. Chief among these is the discovery and successful development of new, targeted cancer therapies. These therapies are highly effective in genetically defined subsets of patients, i.e., patients whose tumors harbor specific genetic abnormalities. In contrast to previous chapters focusing on germline genetic alterations that increase the risk of cancer, this chapter will examine cancers with somatic genetic alterations that confer sensitivity to molecularly targeted therapies. Examples of targeted therapies include imatinib for chronic myelogenous leukemia and gastrointestinal stromal tumors, traztuzumab and lapatinib for HER2-amplified breast cancer, and erlotinib, a tyrosine kinase inhibitor (TKI) targeting epidermal growth factor receptor (EGFR), for EGFR-mutant nonsmall cell lung cancer (see Table 15.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340

    Article  PubMed  CAS  Google Scholar 

  2. Faderl S, Talpaz M, Estrov Z et al (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172

    Article  PubMed  CAS  Google Scholar 

  3. Gratwohl A, Brand R, Apperley J et al (2006) Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in Europe 2006: transplant activity, long-term data and current results. An analysis by the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica 91:513–521

    PubMed  Google Scholar 

  4. Hehlmann R, Berger U, Pfirrmann M et al (2007) Drug treatment is superior to allografting as first-line therapy in chronic myeloid leukemia. Blood 109:4686–4692

    Article  PubMed  CAS  Google Scholar 

  5. Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    Article  PubMed  CAS  Google Scholar 

  6. O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  PubMed  Google Scholar 

  7. Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  PubMed  CAS  Google Scholar 

  8. Sawyers CL, Hochhaus A, Feldman E et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  PubMed  CAS  Google Scholar 

  9. Talpaz M, Silver RT, Druker BJ et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937

    Article  PubMed  CAS  Google Scholar 

  10. Novartis (2007) Imatinib prescribing information. Novartis, East Hanover, NJ

    Google Scholar 

  11. O’Hare T, Eide CA, Deininger MW (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110:2242–2249

    Article  PubMed  CAS  Google Scholar 

  12. Soverini S, Colarossi S, Gnani A et al (2006) Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 12:7374–7379

    Article  PubMed  CAS  Google Scholar 

  13. Branford S, Rudzki Z, Walsh S et al (2003) Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102:276–283

    Article  PubMed  CAS  Google Scholar 

  14. Hughes T, Deininger M, Hochhaus A et al (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37

    Article  PubMed  CAS  Google Scholar 

  15. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653

    Article  PubMed  CAS  Google Scholar 

  16. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  PubMed  CAS  Google Scholar 

  17. O’Hare T, Walters DK, Stoffregen EP et al (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65:4500–4505

    Article  PubMed  Google Scholar 

  18. Kantarjian HM, Talpaz M, Giles F et al (2006) New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med 145:913–923

    PubMed  Google Scholar 

  19. Hochhaus A, Kreil S, Corbin AS et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190–2196

    Article  PubMed  CAS  Google Scholar 

  20. Wu J, Meng F, Lu H et al (2008) Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 111:3821–3829

    Article  PubMed  CAS  Google Scholar 

  21. Burchert A, Wang Y, Cai D et al (2005) Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19:1774–1782

    Article  PubMed  CAS  Google Scholar 

  22. Thomas J, Wang L, Clark RE et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745

    Article  PubMed  CAS  Google Scholar 

  23. Zong Y, Zhou S, Sorrentino BP (2005) Loss of P-glycoprotein expression in hematopoietic stem cells does not improve responses to imatinib in a murine model of chronic myelogenous leukemia. Leukemia 19:1590–1596

    Article  PubMed  CAS  Google Scholar 

  24. Perel JM, McCarthy C, Walker O et al (2005) Clinical significance of development of Philadelphia-chromosome negative clones in patients with chronic myeloid leukemia treated with imatinib mesylate. Haematologica 90 Suppl:ECR25

    Google Scholar 

  25. Tokarski JS, Newitt JA, Chang CY et al (2006) The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790–5797

    Article  PubMed  CAS  Google Scholar 

  26. Lombardo LJ, Lee FY, Chen P et al (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661

    Article  PubMed  CAS  Google Scholar 

  27. Nam S, Kim D, Cheng JQ et al (2005) Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res 65:9185–9189

    Article  PubMed  CAS  Google Scholar 

  28. Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    Article  PubMed  CAS  Google Scholar 

  29. le Coutre P, Ottmann OG, Giles F et al (2008) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111:1834–1839

    Article  PubMed  CAS  Google Scholar 

  30. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130:1466–1478

    PubMed  CAS  Google Scholar 

  31. Blanke CD, Eisenberg BL, Heinrich MC (2001) Gastrointestinal stromal tumors. Curr Treat Options Oncol 2:485–491

    Article  PubMed  CAS  Google Scholar 

  32. Corless CL, Fletcher JA, Heinrich MC (2004) Biology of gastrointestinal stromal tumors. J Clin Oncol 22:3813–3825

    Article  PubMed  CAS  Google Scholar 

  33. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23:70–83

    Article  PubMed  Google Scholar 

  34. Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1741

    Article  PubMed  CAS  Google Scholar 

  35. Somerhausen Nde S, Fletcher CD (1998) Gastrointestinal stromal tumours: an update. Sarcoma 2:133–141

    Article  Google Scholar 

  36. Sarlomo-Rikala M, Kovatich AJ, Barusevicius A et al (1998) CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 11:728–734

    PubMed  CAS  Google Scholar 

  37. Heinrich MC, Dooley DC, Freed AC et al (1993) Constitutive expression of steel factor gene by human stromal cells. Blood 82:771–783

    PubMed  CAS  Google Scholar 

  38. Rubin BP, Singer S, Tsao C et al (2001) KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 61:8118–8121

    PubMed  CAS  Google Scholar 

  39. Corless CL, Heinrich MC (2008) Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol 3:557–586

    Article  PubMed  CAS  Google Scholar 

  40. Fletcher JA, Fletcher CD, Rubin BP et al (2002) KIT gene mutations in gastrointestinal stromal tumors: more complex than previously recognized? Am J Pathol 161:737–738, author reply 738–739

    Article  PubMed  CAS  Google Scholar 

  41. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  PubMed  CAS  Google Scholar 

  42. Heinrich MC, Corless CL, Duensing A et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–710

    Article  PubMed  CAS  Google Scholar 

  43. Lasota J, Stachura J, Miettinen M (2006) GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab Invest 86:94–100

    Article  PubMed  CAS  Google Scholar 

  44. Carroll M, Ohno-Jones S, Tamura S et al (1997) CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90:4947–4952

    PubMed  CAS  Google Scholar 

  45. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  PubMed  CAS  Google Scholar 

  46. Topaly J, Zeller WJ, Fruehauf S (2001) Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 15:342–347

    Article  PubMed  CAS  Google Scholar 

  47. Heinrich MC, Griffith DJ, Druker BJ et al (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    PubMed  CAS  Google Scholar 

  48. Tuveson DA, Willis NA, Jacks T et al (2001) STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20:5054–5058

    Article  PubMed  CAS  Google Scholar 

  49. Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    Article  PubMed  CAS  Google Scholar 

  50. van Oosterom AT, Judson I, Verweij J et al (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358:1421–1423

    Article  PubMed  Google Scholar 

  51. Blanke CD, Demetri GD, von Mehren M et al (2008) Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 26:620–625

    Article  PubMed  CAS  Google Scholar 

  52. Demetri GD, Desai J, Fletcher JA et al (2004) SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib resistance caused by diverse genomic mechanisms in patients with metastatic gastrointestinal stromal tumor. Proc Am Soc Clin Oncol 22:195s

    Google Scholar 

  53. Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338

    Article  PubMed  CAS  Google Scholar 

  54. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    Article  PubMed  CAS  Google Scholar 

  55. Heinrich MC, Corless CL, Blanke CD et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24:4764–4774

    Article  PubMed  CAS  Google Scholar 

  56. Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11:4182–4190

    Article  PubMed  CAS  Google Scholar 

  57. Heinrich MC, Maki RG, Corless CL et al (2008) Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 26:5352–5359

    Article  PubMed  CAS  Google Scholar 

  58. Duensing A, Medeiros F, McConarty B et al (2004) Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 23:3999–4006

    Article  PubMed  CAS  Google Scholar 

  59. Duensing A, Heinrich MC, Fletcher CD et al (2004) Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest 22:106–116

    Article  PubMed  CAS  Google Scholar 

  60. Liegl B, Kepten I, Le C et al (2008) Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216:64–74

    Article  PubMed  CAS  Google Scholar 

  61. McArthur GA, Demetri GD, van Oosterom A et al (2005) Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol 23:866–873

    Article  PubMed  CAS  Google Scholar 

  62. Mehrany K, Swanson NA, Heinrich MC et al (2006) Dermatofibrosarcoma protuberans: a partial response to imatinib therapy. Dermatol Surg 32:456–459

    Article  PubMed  CAS  Google Scholar 

  63. Beadling C, Jacobson-Dunlop E, Hodi FS et al (2008) KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14:6821–6828

    Article  PubMed  CAS  Google Scholar 

  64. Hodi FS, Friedlander P, Corless CL et al (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051

    Article  PubMed  CAS  Google Scholar 

  65. Jiang X, Zhou J, Yuen NK et al (2008) Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res 14:7726–7732

    Article  PubMed  CAS  Google Scholar 

  66. Heinrich MC, Corless CL (2004) Targeting mutant kinases in gastrointestinal stromal tumors: a paradigm for molecular therapy of other sarcomas. Cancer Treat Res 120:129–150

    Article  PubMed  CAS  Google Scholar 

  67. Demetri GD (2001) Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 28:19–26

    Article  PubMed  CAS  Google Scholar 

  68. Heinrich MC, Blanke CD, Druker BJ et al (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20:1692–1703

    Article  PubMed  CAS  Google Scholar 

  69. Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Article  PubMed  CAS  Google Scholar 

  70. Laskin JJ, Sandler AB (2004) Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treat Rev 30:1–17

    Article  PubMed  CAS  Google Scholar 

  71. Brabender J, Danenberg KD, Metzger R et al (2001) Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res 7:1850–1855

    PubMed  CAS  Google Scholar 

  72. Fontanini G, De Laurentiis M, Vignati S et al (1998) Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res 4:241–249

    PubMed  CAS  Google Scholar 

  73. Ohsaki Y, Tanno S, Fujita Y et al (2000) Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep 7:603–607

    PubMed  CAS  Google Scholar 

  74. Rusch V, Baselga J, Cordon-Cardo C et al (1993) Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53:2379–2385

    PubMed  CAS  Google Scholar 

  75. Rusch V, Klimstra D, Venkatraman E et al (1997) Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 3:515–522

    PubMed  CAS  Google Scholar 

  76. Volm M, Rittgen W, Drings P (1998) Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and Myc in patients with squamous cell lung carcinomas. Br J Cancer 77:663–669

    Article  PubMed  CAS  Google Scholar 

  77. Carraway KL 3rd, Cantley LC (1994) A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78:5–8

    Article  PubMed  CAS  Google Scholar 

  78. Riese DJ 2nd, Stern DF (1998) Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 20:41–48

    Article  PubMed  Google Scholar 

  79. Roskoski R Jr (2004) The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 319:1–11

    Article  PubMed  CAS  Google Scholar 

  80. Kawamoto T, Sato JD, Le A et al (1983) Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA 80:1337–1341

    Article  PubMed  CAS  Google Scholar 

  81. Sirotnak FM (2003) Studies with ZD1839 in preclinical models. Semin Oncol 30:12–20

    Article  PubMed  CAS  Google Scholar 

  82. Baselga J, Rischin D, Ranson M et al (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20:4292–4302

    Article  PubMed  CAS  Google Scholar 

  83. Herbst RS, Maddox AM, Rothenberg ML et al (2002) Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol 20:3815–3825

    Article  PubMed  CAS  Google Scholar 

  84. Ranson M, Hammond LA, Ferry D et al (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250

    Article  PubMed  CAS  Google Scholar 

  85. Nakagawa K, Tamura T, Negoro S et al (2003) Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (‘Iressa’, ZD1839) in Japanese patients with solid malignant tumors. Ann Oncol 14:922–930

    Article  PubMed  CAS  Google Scholar 

  86. Fukuoka M, Yano S, Giaccone G et al (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 21:2237–2246

    Article  PubMed  CAS  Google Scholar 

  87. Kris MG, Natale RB, Herbst RS et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290:2149–2158

    Article  PubMed  CAS  Google Scholar 

  88. Shepherd FA, Pereira J, Ciuleanu TE et al (2004) A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. Proc Am Soc Clin Oncol 622s

    Google Scholar 

  89. Thatcher N, Chang A, Parikh P et al (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366:1527–1537

    Article  PubMed  CAS  Google Scholar 

  90. Miller VA, Kris MG, Shah N et al (2004) Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 22:1103–1109

    Article  PubMed  CAS  Google Scholar 

  91. Janne PA, Gurubhagavatula S, Yeap BY et al (2004) Outcomes of patients with advanced non-small cell lung cancer treated with gefitinib (ZD1839, ‘Iressa’) on an expanded access study. Lung Cancer 44:221–230

    Article  PubMed  Google Scholar 

  92. Haringhuizen A, van Tinteren H, Vaessen HF et al (2004) Gefitinib as a last treatment option for non-small-cell lung cancer: durable disease control in a subset of patients. Ann Oncol 15:786–792

    Article  PubMed  CAS  Google Scholar 

  93. Simon GR, Ruckdeschel JC, Williams C et al (2003) Gefitinib (ZD1839) in previously treated advanced non-small-cell lung cancer: experience from a single institution. Cancer Control 10:388–395

    PubMed  Google Scholar 

  94. Argiris A, Mittal N (2004) Gefitinib as first-line, compassionate use therapy in patients with advanced non-small-cell lung cancer. Lung Cancer 43:317–322

    Article  PubMed  Google Scholar 

  95. Park J, Park BB, Kim JY et al (2004) Gefitinib (ZD1839) monotherapy as a salvage regimen for previously treated advanced non-small cell lung cancer. Clin Cancer Res 10:4383–4388

    Article  PubMed  CAS  Google Scholar 

  96. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  97. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  98. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311

    Article  PubMed  CAS  Google Scholar 

  99. Inoue A, Suzuki T, Fukuhara T et al (2006) Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 24:3340–3346

    Article  PubMed  CAS  Google Scholar 

  100. Okamoto I, Kashii T, Urata Y et al (2006) EGFR mutation-based phase II multicenter trial of gefitinib in advanced non-small cell lung cancer (NSCLC) patients (pts): Results of West Japan Thoracic Oncology Group trial (WJTOG0403). J Clin Oncol 24:Absract 7073

    Google Scholar 

  101. Sutani A, Nagai Y, Udagawa K et al (2006) Phase II study of gefitinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) gene mutations detected by PNA-LNA PCR clamp. J Clin Oncol 24:Abstract 7076

    Google Scholar 

  102. Morikawa N, Inoue A, Suzuki T et al (2006) Prospective analysis of the epidermal growth factor receptor gene mutations in non-small cell lung cancer in Japan. J Clin Oncol 24:Abstract 7077

    Google Scholar 

  103. Sequist LV, Martins RG, Spigel D et al (2008) First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 26:2442–2449

    Article  PubMed  CAS  Google Scholar 

  104. Mok T, Wu Y-L, Thongprasert S et al (2008) Phase III, randomised, open-label, first-line study of gefitinib vs carboplatin/paclitaxel in clinically selected patients with advanced non-small cell lung cancer (IPASS). 33rd ESMO congress, Stockholm

    Google Scholar 

  105. Tsao MS, Sakurada A, Cutz JC et al (2005) Erlotinib in lung cancer – molecular and clinical predictors of outcome. N Engl J Med 353:133–144

    Article  PubMed  CAS  Google Scholar 

  106. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  107. Engelman JA, Mukohara T, Zejnullahu K et al (2006) Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR -amplified lung cancer. J Clin Invest 116:2695–2706

    Article  PubMed  CAS  Google Scholar 

  108. Tracy S, Mukohara T, Hansen M et al (2004) Gefitinib induces apoptosis in the EGFRL858R non-small cell lung cancer cell line H3255. Cancer Res 64:7241–7244

    Article  PubMed  CAS  Google Scholar 

  109. Smolen GA, Sordella R, Muir B et al (2006) Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci USA 103:2316–2321

    Article  PubMed  CAS  Google Scholar 

  110. Engelman JA (2007) The role of phosphoinositide 3-kinase pathway inhibitors in the treatment of lung cancer. Clin Cancer Res 13:s4637–s4640

    Article  PubMed  CAS  Google Scholar 

  111. She Q, Solit D, Ye Q et al (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297

    Article  PubMed  CAS  Google Scholar 

  112. Mellinghoff IK, Wang MY, Vivanco I et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  113. Sharma SV, Fischbach MA, Haber DA et al (2006) “Oncogenic shock”: explaining oncogene addiction through differential signal attenuation. Clin Cancer Res 12:4392s–4395s

    Article  PubMed  CAS  Google Scholar 

  114. Engelman JA, Settleman J (2008) Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev 18:73–79

    Article  PubMed  CAS  Google Scholar 

  115. Engelman JA, Janne PA (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 14: 2895–2899

    Article  PubMed  Google Scholar 

  116. Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  PubMed  CAS  Google Scholar 

  117. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:1–11

    Article  CAS  Google Scholar 

  118. Kosaka T, Yatabe Y, Endoh H et al (2006) Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 12:5764–5769

    Article  PubMed  CAS  Google Scholar 

  119. Balak MN, Gong Y, Riely GJ et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501

    Article  PubMed  CAS  Google Scholar 

  120. Kwak EL, Sordella R, Bell DW et al (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 102:7665–7670

    Article  PubMed  CAS  Google Scholar 

  121. Kobayashi S, Ji H, Yuza Y et al (2005) An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res 65:7096–7101

    Article  PubMed  CAS  Google Scholar 

  122. Li D, Shimamura T, Ji H et al (2007) Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 12:81–93

    Article  PubMed  CAS  Google Scholar 

  123. Regales L, Balak MN, Gong Y et al (2007) Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS One 2:e810

    Article  PubMed  CAS  Google Scholar 

  124. Ogino A, Kitao H, Hirano S et al (2007) Emergence of epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non small cell lung cancer cell line. Cancer Res 67:7807–7814

    Article  PubMed  CAS  Google Scholar 

  125. Cappuzzo F, Hirsch FR, Rossi E et al (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97:643–655

    Article  PubMed  CAS  Google Scholar 

  126. Godin-Heymann N, Bryant I, Rivera MN et al (2007) Oncogenic activity of epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance mutation. Cancer Res 67:7319–7326

    Article  PubMed  CAS  Google Scholar 

  127. Greulich H, Chen TH, Feng W et al (2005) Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2:e313

    Article  PubMed  CAS  Google Scholar 

  128. Bell DW, Gore I, Okimoto RA et al (2005) Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 37:1315–1316

    Article  PubMed  CAS  Google Scholar 

  129. Kosaka T, Yatabe Y, Endoh H et al (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64:8919–8923

    Article  PubMed  CAS  Google Scholar 

  130. Engelman JA, Zejnullahu K, Gale CM et al (2007) PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67:11924–11932

    Article  PubMed  CAS  Google Scholar 

  131. Janne PA, Schellens JH, Engelman JA et al (2008) Preliminary activity and safety results from a phase I clinical trial of PF-00299804, an irreversible pan-HER inhibitor, in patients (pts) with NSCLC (Abstract #8027). J Clin Oncol 26:Abstract 8027

    Google Scholar 

  132. Bean J, Brennan C, Shih JY et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 104:20932–20937

    Article  PubMed  CAS  Google Scholar 

  133. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  PubMed  CAS  Google Scholar 

  134. Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  PubMed  CAS  Google Scholar 

  135. Chiarle R, Voena C, Ambrogio C et al (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8:11–23

    Article  PubMed  CAS  Google Scholar 

  136. Soda M, Takada S, Takeuchi K et al (2008) A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA 105:19893–19897

    Article  PubMed  CAS  Google Scholar 

  137. Koivunen JP, Mermel C, Zejnullahu K et al (2008) EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14:4275–4283

    Article  PubMed  CAS  Google Scholar 

  138. McDermott U, Iafrate AJ, Gray NS et al (2008) Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 68:3389–3395

    Article  PubMed  CAS  Google Scholar 

  139. Fukuyoshi Y, Inoue H, Kita Y et al (2008) EML4-ALK fusion transcript is not found in gastrointestinal and breast cancers. Br J Cancer 98:1536–1539

    Article  PubMed  CAS  Google Scholar 

  140. Takeuchi K, Choi YL, Soda M et al (2008) Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res 14:6618–6624

    Article  PubMed  CAS  Google Scholar 

  141. Perner S, Wagner PL, Demichelis F et al (2008) EML4-ALK fusion lung cancer: a rare acquired event. Neoplasia 10: 298–302

    PubMed  CAS  Google Scholar 

  142. Inamura K, Takeuchi K, Togashi Y et al (2008) EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 3:13–17

    Article  PubMed  Google Scholar 

  143. Shinmura K, Kageyama S, Tao H et al (2008) EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61:163–169

    Article  PubMed  Google Scholar 

  144. Wong DW, Leung EL, So KK et al (2009) The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115(8): 1723–1733

    Article  PubMed  CAS  Google Scholar 

  145. Shaw AT, Yeap BY, Mino-Kenudson M et al (2009) Clinical features and outcome of patients with non-small cell lung cancer harboring EML4-ALK. J Clin Oncol 27(26):4247–4253

    Article  PubMed  CAS  Google Scholar 

  146. Castro CY, Moran CA, Flieder DG et al (2001) Primary signet ring cell adenocarcinomas of the lung: a clinicopathological study of 15 cases. Histopathology 39:397–401

    Article  PubMed  CAS  Google Scholar 

  147. Tsuta K, Ishii G, Yoh K et al (2004) Primary lung carcinoma with signet-ring cell carcinoma components: clinicopathological analysis of 39 cases. Am J Surg Pathol 28:868–874

    Article  PubMed  Google Scholar 

  148. Iwasaki T, Ohta M, Lefor AT et al (2008) Signet-ring cell carcinoma component in primary lung adenocarcinoma: potential prognostic factor. Histopathology 52:639–640

    Article  PubMed  CAS  Google Scholar 

  149. Christensen JG, Zou HY, Arango ME et al (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6:3314–3322

    Article  PubMed  CAS  Google Scholar 

  150. Kwak EL, Camidge DR, Clark J et al (2009) Clinical activity observed in a phase I dose-escalation trial of an oral c-Met and ALK inhibitor, PF-02341066. J Clin Oncol 27:15s

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice T. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shaw, A.T., Attar, E.C., Choy, E., Engelman, J. (2010). Somatic Genetic Alterations and Implications for Targeted Therapies in Cancer (GIST, CML, Lung Cancer). In: Chung, D., Haber, D. (eds) Principles of Clinical Cancer Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93846-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-93846-2_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-93844-8

  • Online ISBN: 978-0-387-93846-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics