Skip to main content

Techniques for DNA Analysis

  • Chapter
  • First Online:
Reproductive Endocrinology

Molecular biology is a dynamic field with techniques and analytical tools continuously being developed. Many of the fundamental DNA analysis techniques were developed more than 30 years ago and have evolved through various modifications, automation, and computerization. This chapter reviews the basic concepts and techniques in order to understand how the procedures progressed into those used today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, third edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2001.

    Google Scholar 

  2. Gerischer U. Direct sequencing of DNA produced in a polymerase chain reaction. Methods Mol Biol 2001; 167:53–61.

    PubMed  CAS  Google Scholar 

  3. Graham CA, Hill AJ. Introduction to DNA sequencing. Methods Mol Biol 2001; 167:1–12.

    PubMed  CAS  Google Scholar 

  4. Marziali A, Akeson M. New DNA sequencing methods. Annu Rev Biomed Eng 2001; 3:195–223.

    Article  PubMed  CAS  Google Scholar 

  5. Mitnik L, Novotny M, Felten C, et al. Recent advances in DNA sequencing by capillary and microdevice electrophoresis. Electrophoresis 2001; 22:4104–17.

    Article  PubMed  CAS  Google Scholar 

  6. Watts D, MacBeath JR. Automated fluorescent DNA sequencing on the ABI PRISM 310 genetic analyzer. Methods Mol Biol 2001; 167:153–70.

    PubMed  CAS  Google Scholar 

  7. Zschocke J, Hoffmann GF. Cycle sequencing of polymerase chain reaction-amplified genomic DNA with dye-labeled universal primers. Methods Mol Biol 2001; 167:113–7.

    PubMed  CAS  Google Scholar 

  8. Varsha. DNA fingerprinting in the criminal justice system: an overview. DNA Cell Biol 2006; 25:181–8.

    Google Scholar 

  9. McClelland M, Welsh J. DNA fingerprinting by arbitrarily primed PCR. PCR Methods Appl 1994; 4:S59–65.

    PubMed  CAS  Google Scholar 

  10. Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239:487–91.

    Article  PubMed  CAS  Google Scholar 

  11. Hagen-Mann K, Mann W. RT-PCR and alternative methods to PCR for in vitro amplification of nucleic acids. Exp Clin Endocrinol Diabetes 1995; 103:150–5.

    Article  PubMed  CAS  Google Scholar 

  12. Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction 1986. Biotechnology 1992; 24:17–27.

    Google Scholar 

  13. Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am 1990; 262:56–61, 64–5.

    Google Scholar 

  14. Arya M, Shergill IS, Williamson M, et al. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 2005; 5: 209–19.

    Article  PubMed  CAS  Google Scholar 

  15. Rooney PH. Multiplex quantitative real-time PCR of laser microdissected tissue. Methods Mol Biol 2005; 293:27–37.

    PubMed  CAS  Google Scholar 

  16. Bustin SA, Benes V, Nolan T, et al. Quantitative real-time RT-PCR – a perspective. J Mol Endocrinol 2005; 34:597–601.

    Article  PubMed  CAS  Google Scholar 

  17. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques 2005; 39:75–85.

    Article  PubMed  CAS  Google Scholar 

  18. Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ 2005; 29:151–9.

    Article  PubMed  Google Scholar 

  19. Kaltenboeck B, Wang C. Advances in real-time PCR: application to clinical laboratory diagnostics. Adv Clin Chem 2005; 40: 219–59.

    Article  PubMed  CAS  Google Scholar 

  20. Pourzand C, Cerutti P. Genotypic mutation analysis by RFLP/PCR. Mutat Res 1993; 288:113–21.

    Article  PubMed  CAS  Google Scholar 

  21. Woodward SR. RFLP analysis in familial polyposis and Gardner syndrome. Prog Clin Biol Res 1988; 279:305–8.

    PubMed  CAS  Google Scholar 

  22. Hammarstrom L, Ghanem N, Smith CI, et al. RFLP of human immunoglobulin genes. Exp Clin Immunogenet 1990; 7:7–19.

    PubMed  CAS  Google Scholar 

  23. Permutt MA, Elbein SC. Insulin gene in diabetes. Analysis through RFLP. Diabetes Care 1990; 13:364–74.

    Article  PubMed  CAS  Google Scholar 

  24. Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl 1991; 1:34–8.

    PubMed  CAS  Google Scholar 

  25. Hayashi K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl 1992; 9:73–9.

    PubMed  CAS  Google Scholar 

  26. Hayashi K, Yandell DW. How sensitive is PCR-SSCP? Hum Mutat 1993; 2:338–46.

    Article  PubMed  CAS  Google Scholar 

  27. Fan E, Levin DB, Glickman BW, et al. Limitations in the use of SSCP analysis. Mutat Res 1993; 288:85–92.

    Article  PubMed  CAS  Google Scholar 

  28. Dillon D, Zheng K, Negin B, et al. Detection of Ki-ras and p53 mutations by laser capture microdissection/PCR/SSCP. Methods Mol Biol 2005; 293:57–67.

    PubMed  CAS  Google Scholar 

  29. Fodde R, Losekoot M. Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum Mutat 1994; 3:83–94.

    Article  PubMed  CAS  Google Scholar 

  30. Glavac D, Dean M. Applications of heteroduplex analysis for mutation detection in disease genes. Hum Mutat 1995; 6: 281–7.

    Article  PubMed  CAS  Google Scholar 

  31. Nataraj AJ, Olivos-Glander I, Kusukawa N, et al. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 1999; 20: 1177–85.

    Article  PubMed  CAS  Google Scholar 

  32. Ellis TP, Humphrey KE, Smith MJ, et al. Chemical cleavage of mismatch: a new look at an established method. Hum Mutat 1998; 11:345–53.

    Article  PubMed  CAS  Google Scholar 

  33. Den Dunnen JT, Van Ommen GJ. The protein truncation test: A review. Hum Mutat 1999; 14:95–102.

    Article  Google Scholar 

  34. Hauss O, Muller O. The protein truncation test in mutation detection and molecular diagnosis. Methods Mol Biol 2007; 375: 151–64.

    Article  PubMed  CAS  Google Scholar 

  35. Derks S, Lentjes MH, Hellebrekers DM, et al. Methylation-specific PCR unraveled. Cell Oncol 2004; 26:291–9.

    PubMed  CAS  Google Scholar 

  36. Galm O, Herman JG. Methylation-specific polymerase chain reaction. Methods Mol Med 2005; 113:279–91.

    PubMed  CAS  Google Scholar 

  37. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996; 93:9821–6.

    Google Scholar 

  38. Taylor KH, Kramer RS, Davis JW, et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 2007; 67:8511–8.

    Article  PubMed  CAS  Google Scholar 

  39. Warnecke PM, Stirzaker C, Song J, et al. Identification and resolution of artifacts in bisulfite sequencing. Methods 2002; 27:101–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenet Genome Res 2006; 115:303–9.

    Article  PubMed  CAS  Google Scholar 

  41. Gebhart E. Comparative genomic hybridization (CGH): ten years of substantial progress in human solid tumor molecular cytogenetics. Cytogenet Genome Res 2004; 104:352–8.

    Article  PubMed  CAS  Google Scholar 

  42. Davies JJ, Wilson IM, Lam WL. Array CGH technologies and their applications to cancer genomes. Chromosome Res 2005; 13: 237–48.

    Article  PubMed  CAS  Google Scholar 

  43. Kallioniemi OP, Kallioniemi A, Sudar D, et al. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 1993; 4: 41–6.

    PubMed  CAS  Google Scholar 

  44. Trask BJ. DNA sequence localization in metaphase and interphase cells by fluorescence in situ hybridization. Methods Cell Biol 1991; 35:3–35.

    Article  PubMed  CAS  Google Scholar 

  45. Tibiletti MG. Interphase FISH as a new tool in tumor pathology. Cytogenet Genome Res 2007; 118:229–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier S. Castresana .

Editor information

Editors and Affiliations

32P:

radioactive isotope

5α-DHT:

5α–dihydrotestosterone

BAC:

bacterial artificial chromosome

BSP:

bisulfite sequencing PCR

CGH:

comparative genomic hybridization

CMC:

chemical mismatch cleavage

dATP:

deoxyadenosine triphosphate

dCTP:

deoxycytidine triphosphate

ddATP:

dideoxyadenosine triphosphate

ddCTP:

dideoxycytidine triphosphate

ddGTP:

dideoxyguanosine triphosphate

ddNTP:

dideoxynucleoside triphosphate

ddTTP:

dideoxythymidine triphosphate

DGGE:

denaturing gradient gel electrophoresis

dGTP:

deoxyguanosine triphosphate

DNA:

deoxyribonucleic acid

DNMT:

DNA methyltransferases

dNTP:

deoxynucleoside triphosphate

dsDNA:

double stranded DNA

dTTP:

deoxythymidine triphosphate

dUTP:

deoxyuridine triphosphate

EMC:

enzyme mismatch cleavage

FISH:

fluorescence in-situ hybridization

KCL:

potassium chloride

MAS:

marker-assisted selection

mRNA:

messenger RNA

MSP:

methylation specific PCR

NaOH:

sodium hydroxide

PAGE:

polyacrilamide gel electrophoresis

PCR:

polymerase chain reaction

PTT:

protein truncation test

qPCR:

quantitative real time polymerase chain reaction

RFLP:

restriction fragment length polymorphism

RNA:

ribonucleic acid

RT-PCR:

reverse transcription polymerase chain reaction

SDS-PAGE:

sodium dodecyl sulfate polyacrilamide gel electrophoresis

SSCP:

single-stranded conformational polymorphism

TGGE:

temperature gradient gel electrophoresis

tRNA:

transfer RNA

UV:

ultra-violet

VNTR:

variable number tandem repeats

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castresana, J.S., Lázcoz, P. (2009). Techniques for DNA Analysis. In: Chedrese, P. (eds) Reproductive Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88186-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88186-7_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88185-0

  • Online ISBN: 978-0-387-88186-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics