Skip to main content

Neural Oscillators: Weak Coupling

  • Chapter
  • First Online:
Mathematical Foundations of Neuroscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 35))

Abstract

This chapter begins the second part of the book. By now, we hope that the reader has a thorough knowledge of single cell dynamics and is ready to move onto networks. There are two main approaches to the analysis and modeling of networks of neurons. In one approach, the details of the action potentials (spikes) matter a great deal. In the second approach, we do not care about the timing of individual neurons; rather, we are concerned only with the firing rates of populations. This division is reflected in the sometimes acrimonious battles between those who believe that actual spike times matter and those who believe that the rates are all that the brain cares about. On these issues, we have our own opinions, but for the sake of the reader, we will remain agnostic and try to present both sorts of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Agmon-Snir, C. E. Carr, and J. Rinzel. A case study for dendritic function: Improving the performance of auditory coincidence detectors. Nature, 393:268–272, 1998.

    Article  Google Scholar 

  2. T. Allen. On the arithmetic of phase locking: coupled neurons as a lattice on R 2. Phys. D, 6(3):305–320, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Bai, X. Huang, Q. Yang, and J. Y. Wu. Spatiotemporal patterns of an evoked network oscillation in neocortical slices: Coupled local oscillators. J. Neurophysiol., 96:2528–2538, 2006.

    Article  Google Scholar 

  4. W. Bao and J. Y. Wu. Propagating wave and irregular dynamics: spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J. Neurophysiol., 90:333–341, 2003.

    Article  Google Scholar 

  5. P. C. Bressloff. Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. J. Math. Biol., 40:169–198, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. D. Brodfuehrer, E. A. Debski, B. A. O’Gara, and W. O. Friesen. Neuronal control of leech swimming. J. Neurobiol., 27:403–418, 1995.

    Article  Google Scholar 

  7. E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16:673–715, 2004.

    Article  MATH  Google Scholar 

  8. A. H. Cohen, G. B. Ermentrout, T. Kiemel, N. Kopell, K. A. Sigvardt, and T. L. Williams. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci., 15:434–438, 1992.

    Article  Google Scholar 

  9. S. M. Crook, G. B. Ermentrout, J. M. Bower Dendritic and synaptic effects in systems of coupled cortical oscillators. J. Comput. Neurosci., 5:315–29, 1998.

    Article  MATH  Google Scholar 

  10. A. V. Egorov, B. N. Hamam, E. Fransén, M. E. Hasselmo, and A. A. Alonso. Graded persistent activity in entorhinal cortex neurons. Nature, 420:173–178, 2002.

    Article  Google Scholar 

  11. G. B. Ermentrout and J. D. Cowan. Large scale spatially organized activity in neural nets. SIAM J. Appl. Math., 38(1):1–21, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. B. Ermentrout and D. Kleinfeld. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron, 29:33–44, 2001.

    Article  Google Scholar 

  13. G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46:223–253, 1986.

    MathSciNet  Google Scholar 

  14. G. B. Ermentrout and J. Rinzel. Beyond a pacemaker’s entrainment limit: phase walk-through. Am. J. Physiol. Regul. Integr. Comp. Physiol., 246:102–106, 1984.

    Google Scholar 

  15. C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson, editors. Computational Cell Biology, volume 20 of Interdisciplinary Applied Mathematics. Springer, New York, 2002.

    MATH  Google Scholar 

  16. J. R. Gibson, M. Beierlein, and B. W. Connors. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J. Neurophysiol., 93:467–480, 2005.

    Article  Google Scholar 

  17. D. Golomb and Y. Amitai. Propagating neuronal discharges in neocortical slices: computational and experimental study. J. Neurophysiol., 78:1199–1211, Sep 1997.

    Google Scholar 

  18. M. Golubitsky, I. Stewart, P. L. Buono, and J. J. Collins. Symmetry in locomotor central pattern generators and animal gaits. Nature, 401:693–695, 1999.

    Article  Google Scholar 

  19. C. M. Gray, P. König, A. K. Engel, and W. Singer. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338:334–337, 1989.

    Article  Google Scholar 

  20. C. M. Gray, A. K. Engel, P. König, and W. Singer. Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Vis. Neurosci., 8:337–347, 1992.

    Article  Google Scholar 

  21. J. Guckenheimer and R. A. Oliva. Chaos in the hodgkin-huxley model. SIAM J. Apl. Dyn. Syst., 1:105–114, 1992.

    Article  MathSciNet  Google Scholar 

  22. A. T. Gulledge and G. J. Stuart. Excitatory actions of GABA in the cortex. Neuron, 37:299–309, 2003.

    Article  Google Scholar 

  23. J. K. Hale and H. Koçak. Dynamics and Bifurcations, volume 3 of Texts in Applied Mathematics. Springer, New York, 1991.

    Book  MATH  Google Scholar 

  24. F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks, volume 126 of Applied Mathematical Sciences. Springer, New York, 1997.

    Book  Google Scholar 

  25. J. Huguenard and D. McCormick. Electrophysiology of the Neuron: An Interactive Tutorial. Oxford University Press, Oxford, 1994.

    Google Scholar 

  26. E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw., 14:1569–1572, 2003.

    Article  Google Scholar 

  27. J. P. Keener. Principles of Applied Mathematics: Transformation and Approximation. Advanced Book Program, Perseus Books, Cambridge, MA, revised edition, 2000.

    MATH  Google Scholar 

  28. C. Koch and e. I. Segev. Methods in Neuronal Modeling: From Synapses to Networks. MIT, Cambridge, MA, 1998.

    Google Scholar 

  29. N. Kopell. Toward a theory of modelling central pattern generators. In A. H. Cohen, S. Rossignol, and S. Grillner, editors, Neural Control of Rhythmic Movements in Vertebrates, pages 265–284. Wiley, New York, 1988.

    Google Scholar 

  30. N. Kopell and B. Ermentrout. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler, G. Iooss, and N. Kopell, editors, Handbook of Dynamical Systems II: Towards Applications. Elsevier, Amsterdam, 2002.

    Google Scholar 

  31. V. I. Krinski and I. u. M. Kokoz. Analysis of the equations of excitable membranes. I. Reduction of the Hodgkins–Huxley equations to a 2d order system. Biofizika, 18:506–511, 1973.

    Google Scholar 

  32. E. P. Krisner. Homoclinic orbit solutions of a one dimensional Wilson-Cowan type model. Electron. J. Differ. Equat., 107:30, 2008.

    MathSciNet  Google Scholar 

  33. Y. Manor, A. Bose, V. Booth, and F. Nadim. Contribution of synaptic depression to phase maintenance in a model rhythmic network. J. Neurophysiol., 90:3513–3528, Nov 2003.

    Article  Google Scholar 

  34. H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A., 95:5323–5328, 1998.

    Article  Google Scholar 

  35. J. M. Mayville, S. L. Bressler, A. Fuchs, and J. A. Kelso. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp. Brain Res., 127:371–381, 1999.

    Article  Google Scholar 

  36. B. D. Mensh, E. Aksay, D. D. Lee, H. S. Seung, and D. W. Tank. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback. Vis. Res., 44:711–726, 2004.

    Article  Google Scholar 

  37. M. Migliore, L. Messineo, and M. Ferrante. Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J. Comput. Neurosci., 16:5–13, 2004.

    Article  Google Scholar 

  38. R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6):1645–1662, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. D. Murray. Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics. Spatial models and biomedical applications. Springer, New York, third edition, 2003.

    Google Scholar 

  40. M. Muller and R. Wehner. Path integration in desert ants, Cataglyphis fortis. Proc. Natl. Acad. Sci. U.S.A., 85:5287–5290, 1988.

    Article  Google Scholar 

  41. R. Osan, R. Curtu, J. Rubin, and B. Ermentrout. Multiple-spike waves in a one-dimensional integrate-and-fire neural network. J. Math. Biol., 48:243–274, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. E. Paullet and G. B. Ermentrout. Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math., 54(6):1720–1744, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Pfeuty, G. Mato, D. Golomb, and D. Hansel. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci., 23:6280–6294, 2003.

    Google Scholar 

  44. P. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced traub model of ca3 neurons. J. Comput. Neurosci., 1:39–60, 1994.

    Article  Google Scholar 

  45. D. J. Pinto, J. A. Hartings, J. C. Brumberg, and D. J. Simons. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb. Cortex, 13:33–44, Jan 2003.

    Article  Google Scholar 

  46. J. C. Prechtl, L. B. Cohen, B. Pesaran, P. P. Mitra, and D. Kleinfeld. Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. U.S.A., 94:7621–7626, 1997.

    Article  Google Scholar 

  47. R. Romo, C. D. Brody, A. Hernandez, and L. Lemus. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399:470–473, 1999.

    Article  Google Scholar 

  48. A. Shpiro, R. Curtu, J. Rinzel, and N. Rubin. Dynamical characteristics common to neuronal competition models. J. Neurophysiol., 97:462–473, 2007.

    Article  Google Scholar 

  49. F. Skinner, N. Kopell, and E. Marder. Mechanisms for oscillation and frequency control in networks of mutually inhibitory relaxation oscillators. J. Comput. Neurosci., 1:69–87, 1994.

    Article  MATH  Google Scholar 

  50. R. D. Traub, R. K. Wong, R. Miles, and H. Michelson. A model of a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol., 66:635–650, 1991.

    Google Scholar 

  51. M. Tsodyks, A. Uziel, and H. Markram. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci., 20:RC50, 2000.

    Google Scholar 

  52. C. Van Vreeswijk, L. F. Abbott, and G. B. Ermentrout. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 1:313–321, 1994.

    Article  Google Scholar 

  53. X. J. Wang. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol., 79:1549–1566, 1998.

    Google Scholar 

  54. X. J. Wang. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci., 19:9587–9603, 1999.

    Google Scholar 

  55. X.-J. Wang and J. Rinzel. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput., 4:84–97, 1992.

    Article  Google Scholar 

  56. M. A. Whittington, R. D. Traub, and J. G. Jefferys. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373:612–615, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, G.B., Terman, D.H. (2010). Neural Oscillators: Weak Coupling. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_8

Download citation

Publish with us

Policies and ethics