Skip to main content

Natural Products from Seaweeds

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

Marine biota, even though the oceans are covering two thirds of earth’s surface, remains an unexplored source of new and exciting chemical structures. Systematic investigations on marine organisms started only forty years ago, but the results have already proven the impact of the significantly diverse conditions and the distinct evolution on their biosynthetic pathways that frequently yield complex molecules with no counterparts in the terrestrial environment. Seaweeds are among the first marine organisms chemically analyzed, with more than 3,600 articles published describing 3,300 secondary metabolites from marine plants and algae, and they still remain an almost endless source of new bioactive compounds. In this chapter, some of the major classes of seaweed metabolites which find applications in the industrial sector, such as carotenoids, phyco­colloids, polyunsaturated fatty acids and sterols, isolated either from aquacultures or wild harvesting, are presented. The ecological roles of a number of metabolites, as well as their potential application on the prevention of biofouling are described. The bioactive metabolites that target the pharmaceutical market, along with the spectrum of biological activities, are classified according to the class of producing seaweeds. The current status and the potential of seaweed metabolites for industrial exploitation is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farnsworth, N. R. et al (1985) Medicinal plants in therapy. Bull. World Health Organ. 63, 965–981

    PubMed  CAS  Google Scholar 

  2. Cragg, G.M. and Newman, D.J. (2005) International collaboration in drug discovery and development from natural sources. Pure Appl. Chem. 77, 1923–1942

    Article  CAS  Google Scholar 

  3. de la Torre-Castro, M. and Ronnback, P. (2004) Links between humans and seagrasses: an example from tropical East Africa. Ocean Coast. Manage. 47, 361–387

    Article  Google Scholar 

  4. Pietra, F. (2002) Defining biodiversity. In Biodiversity and natural product diversity. (Pietra, F., eds.), p. 4, Pergamon, Amsterdam

    Google Scholar 

  5. Cragg, G.M. and Newman, D.J. (2005) Biodiversity: a continuing source of novel drug leads. Pure Appl. Chem. 77, 7–24

    Article  CAS  Google Scholar 

  6. Cardozo, K.H.M. et al (2007) Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. 146, 60–78

    Article  CAS  Google Scholar 

  7. Puglisi, M.P. et al (2004) Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron.60, 7035–7039

    Article  CAS  Google Scholar 

  8. Barros, M.P. et al (2005) Rhythmicity and oxidative/nitrosative stress in algae. Biol. Rhythm. Res. 36, 67–82

    Article  CAS  Google Scholar 

  9. Tringali, C. (1997) Bioactive metabolites from marine algae: recent results. Curr. Org. Chem. 1, 375–394

    CAS  Google Scholar 

  10. Burja, A.M. et al (2001) Marine cyanobacteria-a profilic source of natural products. Tetrahedron. 57, 9347–9377

    Article  CAS  Google Scholar 

  11. Mayer, A.M.S. and Hamann, M.T. (2005) Marine pharmacology in 2001-2002 marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp. Biochem. Physiol C. 140, 265–286

    Google Scholar 

  12. Mayer, A.M.S. et al (2007) Marine pharmacology in 2003-4: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C. 145, 553–581

    Google Scholar 

  13. Singh, S. et al (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25, 73–95

    Article  PubMed  CAS  Google Scholar 

  14. Blunt, J.W. et al (2007) Marine natural products. Nat. Prod. Rep. 24, 31–86 and earlier reviews in this series

    Article  PubMed  CAS  Google Scholar 

  15. Vadas, R.L. (1979) Seaweeds: an overview; ecological and economic importance. Experientia. 35, 429–433

    Article  Google Scholar 

  16. Rasmussen, R.S. and Morrissey, M.T. (2007) Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res. 52, 237–292

    Article  PubMed  CAS  Google Scholar 

  17. Li, H.B. and Chen, F. (2001) Preparative isolation and purification of astaxanthin from the green microalga Chlorococcum sp. by high-speed counter-current chromatography. In Algae and Their Biotechnological Potential (Chen, F. and Jiang, Y., eds.), pp. 127–134, Kluwer, Dordrecht/Boston, MA/London

    Google Scholar 

  18. Dawson, E.Y. (1966) Marine Botany: An Introduction, 371 p., Holt, Rinehart/Winston

    Google Scholar 

  19. Bold, H.C. (1967) Morphology of Plants, 2nd edn, 541 p., Harper & Row, London

    Google Scholar 

  20. Borowitzka, M.A. (1993) Products from microalgae. INFOFISH Int. 93, 21–26

    Google Scholar 

  21. Grobbelaar, J.U. (2004) Algal biotechnology: real opportunities for Africa. S. Afr. J. Bot. 70, 140–144

    Google Scholar 

  22. Kay, R.A. (1991) Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30, 555–573

    Article  PubMed  CAS  Google Scholar 

  23. Yap, C.Y. and Chen, F. (2001) Polyunsaturated fatty acids: Biological significance, biosynthesis, and production by microalgae and microalgae-like organisms. In Algae and Their Biotechnological Potential (Chen, F. and Jiang, Y., eds.), pp. 1–32, Kluwer, Dordrecht

    Google Scholar 

  24. Roussis, V. et al (2004) Cytotoxic metabolites from marine algae. In Plants That Fight Cancer (Kintzios, S.E. and Barberaki, M.G., eds.), pp. 195–241, CRC Press, Boca Raton, FL

    Chapter  Google Scholar 

  25. Luiten, E.E. et al (2003) Realizing the promises of marine biotechnology. Biomol. Eng. 20, 429–439

    Article  PubMed  CAS  Google Scholar 

  26. Tseng, C.K. (2001) Algal biotechnology industries and research activities in China. J. Appl. Phycol. 13, 375–380

    Article  Google Scholar 

  27. FAO (2004) The State of the World Fisheries and Aquaculture 2004 (SOFIA), FAO, Rome, http://www.fao.org/sof/sofia/index_en.htm

  28. von Elbe, J.H. and Schwartz, S.J. (1996) Colorants. In Food Chemistry (Fennema, O.R., ed.), pp. 651–722, Marcel Dekker, New York

    Google Scholar 

  29. Gregory, J.F., III (1996) Vitamins. In Food Chemistry (Fennema, O.R., ed.), pp. 531–616, Marcel Dekker, New York

    Google Scholar 

  30. Ben-Amotz, A. (1993) Production of beta-carotene and vitamins by the halotolerant alga Dunaliella. In Marine Biotechnology, Volume 1: Pharmaceutical and Bioactive Natural Products (Attaway, D.H. and Zaborsky, O.R., eds), pp. 411–417, Plenum, New York

    Google Scholar 

  31. El Baz, F.K. et al (2002) Accumulation of antioxidant vitamins in Dunaliella salina. J. Biol. Sci. 2, 220–223

    Article  Google Scholar 

  32. Meyers, S.P. and Latscha, T. (1997) Carotenoids. In Crustacean Nutrition, Advances in World Aquaculture (D’Abramo, L.R. et al., eds.), vol. 6, pp. 164–193, World Aquaculture Society, Baton Rouge, LA

    Google Scholar 

  33. Miki, W. (1991) Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63, 141–146

    Article  CAS  Google Scholar 

  34. Guerin, M. et al (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210–216

    Article  PubMed  CAS  Google Scholar 

  35. Potin, P. et al (1999) Oligosaccharide recognition signals and defence reactions inmarine plant-microbe interactions. Curr.Opin. Microbiol. 2, 276–283

    Article  PubMed  CAS  Google Scholar 

  36. Mayer, A.M.S. and Gustafson, K.R. (2004) Marine pharmacology in 2001–2: antitumour and cytotoxic compounds. Eur. J. Cancer. 40, 2676–2704

    Article  PubMed  CAS  Google Scholar 

  37. Mayer, A.M.S. and Gustafson, K.R. (2006) Marine pharmacology in 2003–2004: anti-tumour and cytotoxic compounds. Eur. J. Cancer. 42, 2241–2270

    Article  PubMed  CAS  Google Scholar 

  38. Smit, A.J. (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16, 245–262

    Article  CAS  Google Scholar 

  39. Ackman, R.G. et al (1964) Origin of marine fatty acids. Analysis of the fatty acids produced by the diatom Skeletonema costatum. J. Fish Res. Bd. Can. 21, 747–756

    Article  CAS  Google Scholar 

  40. Ohr, L.M. (2005) Riding the nutraceuticals wave. Food Technol. 59, 95–96

    Google Scholar 

  41. Gill, I. and Valivety, R. (1997) Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and application. Trends Biotechnol. 15, 401–409

    Article  PubMed  CAS  Google Scholar 

  42. Sayanova, O.V. and Napier, J.A. (2004) Eicosapentaenoic acid: biosynthetic routs and the potential for synthesis in transgenic plants. Phytochemistry. 65, 147–158

    Article  PubMed  CAS  Google Scholar 

  43. Funk, C.D. (2001) Prostaglandins and leukotrienes: advances in eicosanoids biology. Science. 294, 1871–1875

    Article  PubMed  CAS  Google Scholar 

  44. Bajpai, P. and Bajpai, P.K. (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J. Biotechnol. 30, 161–183

    Article  PubMed  CAS  Google Scholar 

  45. Sijtsma, L. and de Swaaf, M.E. (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 64, 146–153

    Article  PubMed  CAS  Google Scholar 

  46. Ponomarenko, L.P. et al (2004) Sterols of marine microalgae Pyramimonas cf. cordata (prasinophyta), Atteya ussurensis sp. nov. (Bacollariophyta) and a spring diatom bloom form Lake Baikal. Comp. Biochem. Physiol. B. 138, 65–70

    Article  PubMed  CAS  Google Scholar 

  47. Delaunay, F. et al (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pectenmaximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173, 163–179

    Article  CAS  Google Scholar 

  48. Paul, V.J. et al (2006) Marine chemical ecology. Nat. Prod. Rep. 23, 153–180

    Article  PubMed  CAS  Google Scholar 

  49. La Barre, S.L. et al (2004) Monitoring defensive responses in macroalgae-limitations and perspectives. Phytochem. Rev. 3, 371–379

    Article  CAS  Google Scholar 

  50. Fusetani, N. (2004) Biofouling and antifouling. Nat. Prod. Rep. 21, 94–104

    Article  PubMed  CAS  Google Scholar 

  51. Barbosa, J.P. et al (2003) A dolabellane diterpene from the Brazilian brown alga Dictyota pfaffii. Biochem. Syst. Ecol. 31, 1451–1453

    Article  CAS  Google Scholar 

  52. Barbosa, J.P. et al (2004) A dolabellane diteprene from the brown alga Dictyota pfaffii as chemical defense against herbivores. Bot. Mar. 47, 147–151

    Article  CAS  Google Scholar 

  53. Soares, A.R. et al (2003) Variation on diterpene production by the Brazilian alga Stypopodium zonale (Dictyotales, Phaeophyta). Biochem. Syst. Ecol. 31, 1347–1350

    Article  CAS  Google Scholar 

  54. Pereira, R.C. et al (2004) Variation in chemical defenses against herbivory in southwestern Atlantic Stypopodium zonale (Phaeophyta). Bot. Mar. 47, 202–208

    Article  Google Scholar 

  55. Ankisetty, S. et al (2004) Chemical investigation of predator-deterred macrolagae from the Antarctic Peninsula. J. Nat. Prod. 67, 1295–1302

    Article  PubMed  CAS  Google Scholar 

  56. Amsler, C.D. and Fairhead, V.A. (2005) Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res. 43, 1–91

    Article  CAS  Google Scholar 

  57. Shibata, T. et al (2002) Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornotus. Eur. J. Phycol. 37, 493–500

    Article  Google Scholar 

  58. Wright, J.T. et al (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology. 85, 2946–2959

    Article  Google Scholar 

  59. Pereira, R.C. et al (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Braz. J. Biol. 63, 665–672

    Article  PubMed  CAS  Google Scholar 

  60. Paul, V.J. et al (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In Marine Chemical Ecology (McClintock, J.B. and Baker, B.J., eds.), pp. 227–265, CRC Press, Boca Raton, FL

    Google Scholar 

  61. Gross, H. and König, G.M. (2006) Terepenoids from marine organisms: unique structures and their pharmacological potential. Phytochem. Rev. 5, 115–141

    Article  CAS  Google Scholar 

  62. Phillips, J.A. and Price, I.R. (2002) How different is Mediterranean Caulerpa taxifolia (Caulerpales: Chlorophyta) to other populations of the species. Mar. Ecol. Prog. Ser. 238, 61–71

    Article  Google Scholar 

  63. Bellan-Santini, D. et al (1996) The influence of the introduced tropical alga Caulerpa taxifolia, on the biodiversity of the Mediterranean marine biota. J. Mar. Biol. 76, 235–237

    Article  Google Scholar 

  64. Paul, V.J. and Fenical, W. (1986) Chemical defense in tropical green algae, order Caulerpales. Mar. Ecol. Prog. Ser. 34, 157–169

    Article  CAS  Google Scholar 

  65. Paul, V.J. and Fenical, W. (1987) Natural products chemistry and chemical defense in tropical marine algae of the phylum Chlorophyta. In Bioorganic Marine Chemistry (Scheuer, P.J., ed.), pp. 1–29, Springer, Berlin

    Chapter  Google Scholar 

  66. Brunelli, M. et al (2000) Neurotoxic effects of caulerpenyne. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 24, 939–954

    Article  CAS  Google Scholar 

  67. Mozzachiodi, R. et al (2001) Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses after polarization in invertebrate neurons. Neuroscience. 107, 519–526

    Article  PubMed  CAS  Google Scholar 

  68. Parent-Massin, D. et al (1996) Evaluation of the toxicological risk to humans of caulerpenyne using human hematopoietic progenitors, melanocytes, and keratinocytes in culture. J. Toxicol. Environ. Health. 47, 47–59

    Article  PubMed  CAS  Google Scholar 

  69. Barbier, P. et al (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK–N–SH and modifies the microtubule network. Life Sci. 70, 415–429

    Article  PubMed  CAS  Google Scholar 

  70. Thibaut, T. and Meinesz, A. (2000) Are the Mediterranean ascoglossan molluscs Oxynoe olivacea and Lobiger serradifalci suitable agents for a biological control against the invading alga Caulerpa taxifolia. C. R. Acad. Sci. (Ser. 3). 323, 477–488

    CAS  Google Scholar 

  71. Adolph, S. et al (2005) Wound closure in the invasive green alga Caulerpa taxifolia by enzymatic activation of a protein cross-linker. Angew. Chem. Int. Ed. 44, 2806–2808

    Article  CAS  Google Scholar 

  72. Jung, V. and Pohnert, G. (2001) Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron. 57, 7169–7172

    Article  CAS  Google Scholar 

  73. Metcalf, R.L. (1987) Plant volatiles as insect attractants. CRC Crit. Rev. Plant Sci. 5, 251–301

    Article  CAS  Google Scholar 

  74. Harborne, J.B. (1994) Introduction to Ecological Biochemistry, 318 p., Academic, London

    Google Scholar 

  75. Kaissling, K.E. and Priesner, E. (1970)Die Riechschwelle des Seidenspinners. Naturwissens-chaften. 57, 23–28

    Article  CAS  Google Scholar 

  76. Arimura, G. et al (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature. 406, 512–515

    Article  PubMed  CAS  Google Scholar 

  77. Turlings, T.C.J. et al (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science. 240, 1251–1253

    Article  Google Scholar 

  78. Kessler, A. and Baldwin, I.T. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science. 291, 2141–2144

    Article  PubMed  CAS  Google Scholar 

  79. Fink, P. (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshwater Behav. Physiol. 40, 155–168

    Article  CAS  Google Scholar 

  80. Boland, W. (1995) The chemistry of gamete attraction – chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones. Proc. Natl. Acad. Sci. USA. 92, 37–43

    Article  Google Scholar 

  81. Pohnert, G. and Boland, W. (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat. Prod. Rep. 19, 108–122

    Article  PubMed  CAS  Google Scholar 

  82. Müller, D.G. et al (1971) Sex attractant in a brown alga - chemical structure. Science. 171, 815

    Article  PubMed  Google Scholar 

  83. Wendel, T. and Jüttner, F. (1996) Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochemistry. 41, 1445–1449

    Article  CAS  Google Scholar 

  84. Hombeck, M. and Boland, W. (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella Formosa (Bacillariophyceae). Tetrahedron. 54, 11033–11042

    Article  CAS  Google Scholar 

  85. Fink, P. et al (2006) Volatile foraging kairomones in the littoral zone: attraction of an herbivorous freshwater gastropod to algal odors. J. Chem. Ecol. 32, 1867–1881

    Article  PubMed  CAS  Google Scholar 

  86. Fink, P. et al (2006) Oxylipins from freshwater diatoms act as attractants for a benthic herbivore. Arch. Hydrobiol. 167, 561–574

    Article  CAS  Google Scholar 

  87. Steinke, M. et al (2002) Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol. 38, 630–638

    Article  CAS  Google Scholar 

  88. Zeeck, E. et al (1991) Sex-pheromones in a marine polychaete - biologically-active compounds from female Platynereis dumerilii. J. Exp. Zool. 260, 93–98

    Article  CAS  Google Scholar 

  89. Wolfe, G.V. and Steinke, M. (1996) Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160

    Article  CAS  Google Scholar 

  90. Gabric, A. et al (2001) Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review. Chemosphere Glob. Change Sci. 3, 377–392

    Article  CAS  Google Scholar 

  91. Ellis, J. and Korth, W. (1993) Removal of geosmin and methylisoborneol from drinking water by adsorption on ultrastable Zeolite-Y. Water Res. 27, 535–539

    Article  CAS  Google Scholar 

  92. Bhadury, P. and Wright, P.C. (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta. 219, 561–578

    Article  PubMed  CAS  Google Scholar 

  93. Costerton, J.W. et al (1995) Microbial biofilms. Ann. Rev. Microbiol. 49, 711–745

    Article  CAS  Google Scholar 

  94. Abarzua, S. and Jakubowski, S. (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser. II. 123, 301–312

    Article  CAS  Google Scholar 

  95. Clare, A.S. (1996) Marine natural product antifoulants: status and potential. Biofouling. 9, 211–229

    Article  CAS  Google Scholar 

  96. Bellas, J. (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 367, 573–585

    Article  PubMed  CAS  Google Scholar 

  97. Braithwaite, R.A. and Fletcher, R.L. (2005) The toxicity of Irgarol 1051 and Sea-Nine 211 to the non-target macroalga Fucus serratus with  the aid of an image capture and analysis system. J. Exp. Mar. Biol. Ecol. 322, 111–121

    Article  CAS  Google Scholar 

  98. Fernandez-Alba, A.R. et al (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta. 456, 303–312

    Article  CAS  Google Scholar 

  99. Kobayashi, N. and Okamura, H. (2002) Effects of new antifouling compounds on the development of sea urchin. Mar. Pollut. Bull. 44, 748–751

    Article  PubMed  CAS  Google Scholar 

  100. Kwok, K.W.H. and Leung, K.M.H. (2005) Toxicity of antifouling biocides to the intertidal harpacticoid copepod Trigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Mar. Pollut. Bull. 51, 830–837

    Article  PubMed  CAS  Google Scholar 

  101. Myers, J.H. et al (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine. Mar. Pollut. Bull. 52, 1048–1055

    Article  PubMed  CAS  Google Scholar 

  102. Di Landa, G. et al (2006) Occurrence of antifouling paint booster biocides in selected harbors and marinas inside the Gulf of Napoli: a preliminary survey. Mar. Pollut. Bull. 52, 1541–1546

    Article  PubMed  CAS  Google Scholar 

  103. Dahlström, M. et al (2000) Surface active adrenoreceptor compounds prevent the settlement of cyprid larvae of Balanus improvisus. Biofouling. 16, 191–198

    Article  Google Scholar 

  104. Kubanek, J. et al (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA. 100, 6916–6921

    Article  PubMed  CAS  Google Scholar 

  105. Hellio, C. et al (2002) Screening of marine algal extracts for anti-settlement activities against microalgae and maroalgae. Biofouling. 18, 205–215

    Article  CAS  Google Scholar 

  106. Steinberg, P.D. and de Nys, R. (2002) Chemical mediation of colonization of seaweed surfaces. J. Phycol. 38, 621–629

    Article  CAS  Google Scholar 

  107. Hay, M.E. (1992) The role of seaweed chemical defenses in the evolution of feeding specialization and in the mediation of complex interactions. In Ecological Roles of Marine Natural Products(Paul, V.J., ed.), pp. 93–118, Cornell University Press, Ithaca, NY/London

    Google Scholar 

  108. de Nys, R. and Steinberg, P.D. (2002) Linking marine biology and biotechnology. Curr. Opin. Biotechnol. 13, 244–248

    Article  PubMed  CAS  Google Scholar 

  109. Manefield, M. et al (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 148, 1119–1127

    PubMed  CAS  Google Scholar 

  110. Hentzer, M. et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 148, 87–102

    PubMed  CAS  Google Scholar 

  111. Steinberg, P.D. et al (2001) Chemical mediation of surface colonisation. In Marine Chemical Ecology (McClintock, J.B. and Baker, B.J., eds), pp. 355–387, CRC Press, Boca Raton, FL

    Google Scholar 

  112. Kjelleberg, S. et al (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 13, 85–93

    Article  Google Scholar 

  113. Kjelleberg, S. and Steinberg, P.D. (2001) Surface warfare in the sea. Microbiol. Today. 28, 134–135

    Google Scholar 

  114. Manefield, M. et al (1999) Inhibition of LuxR-based AHL regulation by halogenated furanones from Delisea pulchra. Microbiology. 145, 283–291

    Article  PubMed  CAS  Google Scholar 

  115. Givskov, M. et al (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618–6622

    PubMed  CAS  Google Scholar 

  116. Steinberg, P.D. et al (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling. 12, 227–244

    Article  Google Scholar 

  117. Maximilien, R. et al (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from red alga Delisea pulchra. Aquat. Microb. Ecol. 15, 233–246

    Article  Google Scholar 

  118. Ren, D. et al (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett. Appl. Microbiol. 34, 293–299

    Article  PubMed  CAS  Google Scholar 

  119. de Nys, R. et al (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling. 8, 259–271

    Article  CAS  Google Scholar 

  120. Rasmussen, T.B. et al (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology. 12, 3237–3244

    Google Scholar 

  121. Ren, D. et al (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol. 3, 731–736

    Article  PubMed  CAS  Google Scholar 

  122. McLachlan, J. and Craigie, J.S. (1966) Antialgal activity of some simple phenols. J. Phycol. 2, 133–135

    Article  CAS  Google Scholar 

  123. König, G.M. and Wright, A.D. (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J. Nat. Prod. 60, 967–970

    Article  PubMed  Google Scholar 

  124. de Nys, R. et al (1996) The need for standardised broad scale bioassay testing: a case study using the red algae Laurencia rigida. Biofouling. 10, 213–224

    Article  PubMed  CAS  Google Scholar 

  125. König, G.M. et al (1999) Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga. Phytochemistry. 52, 1047–1053

    Article  PubMed  Google Scholar 

  126. König, G.M. et al (1999) Halogenated monoterpenes from Plocamium costatum and their biological activity. J. Nat. Prod. 62, 383–385

    Article  PubMed  Google Scholar 

  127. Jennings, J.G. and Steinberg, P.D. (1997) Phlorotannins vs. others factors affecting epiphyte abundance on the kelp Ecklonia radiata. Ocealogia. 109, 461–473

    Article  Google Scholar 

  128. Schmitt, T.M. et al (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology. 76, 107–123

    Article  Google Scholar 

  129. Schmitt, T.M. et al (1998) Seaweed secondary metabolites as antifoulants: effects of Dictyota spp. diterpenes on survivorship, settlement, and development of marine invertebrate larvae. Chemoecology. 8, 125–131

    Article  CAS  Google Scholar 

  130. Taniguchi, K. et al (1989) Inhibitory effects of the settlement and metamorphosis of the abalone Haliotis discus hannai veligers by the methanol extracts from the brown alga Dilophus okamurai. Nippon Suisan Gakkaishi. 55, 1133–1137

    Article  Google Scholar 

  131. Maréchal, J. et al (2004) Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcate (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J. Exp. Mar. Biol. Ecol. 313, 47–62

    Article  Google Scholar 

  132. Culioli, G. et al (2002) Seasonal variations in the chemical composition of Bifurcaria bifurcate (Cystoseiraceae). Biochem. Syst. Ecol. 30, 61–64

    Article  CAS  Google Scholar 

  133. Smyrniotopoulos, V. et al (2003) Acetylene sesquiterpenoid esters from the green alga Caulerpa prolifera. J. Nat. Prod. 66, 21–24

    Article  PubMed  CAS  Google Scholar 

  134. Pietra, F. (1990) A Secret World – Natural Products of Marine Life, 288 p., Birkhauser Verlag AG, Basel

    Google Scholar 

  135. McConnell, O.J. et al (1994) The discovery of natural products with therapeutic potential. Biotechnology. 26, 109–174

    PubMed  CAS  Google Scholar 

  136. Riguera, R. (1997) Isolating bioactive compounds from marine organisms. J. Mar. Biotechnol. 5, 187–193

    CAS  Google Scholar 

  137. Kerr, R.G. and Kerr, S.S. (1999) Marine natural products as therapeutic agents. Exp. Opin. Ther. Patents. 9, 1207–1222

    Article  CAS  Google Scholar 

  138. MarinLit database, Department of Chemistry, University of Canterbury, http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml

  139. Mori, K. and Koga, Y. (1992) Synthesis and absolute configuration of (-)-stypoldione. Bioorg. Med. Chem. Lett. 2, 391–394

    Article  CAS  Google Scholar 

  140. Depix, M.S. et al (1998) The compound 14-keto-stypodiol diacetate from the algae Stypopodium flabelliforme inhibits microtubules and cell proliferation in DU-145 human prostatic cells. Mol. Cell. Biochem. 187, 191–199

    Article  PubMed  CAS  Google Scholar 

  141. Fadli, M. et al (1991) Novel meroterpenoids from Cystoseira mediterranea: use of the Crown-Gall bioassay as a primary screen for lipophilic antineoplastic agents. J. Nat. Prod. 54, 261–264

    Article  PubMed  CAS  Google Scholar 

  142. Urones, J.G. et al (1992) Meroterpenes from Cystoceira usneoides. Phytochemistry. 31, 179–182

    Article  CAS  Google Scholar 

  143. Ishitsuka, M.O. et al (1990) Antitumor xenicane and norxenicane lactones from the brown algae Dictyotaceae. J. Org. Chem. 53, 5010–5013

    Article  Google Scholar 

  144. Durán, R. et al (1997) New diterpenoids from the alga Dictyota dichotoma. Tetrahedron. 53, 8675–8688

    Article  Google Scholar 

  145. Ishitsuka, M.O. et al (1990) Bicyclic diterpenes from two species of brown algae of the Dictyotaceae. Phytochemistry. 29, 2605–2610

    Article  CAS  Google Scholar 

  146. Pereira, H.S. et al (2004) Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antivir. Res. 64, 69–76

    PubMed  CAS  Google Scholar 

  147. Bouaicha, N. et al (1993) Bioactive diterpenoids isolated from Dilophus ligulatus. Planta Med. 59, 256–258

    Article  PubMed  CAS  Google Scholar 

  148. Bouaicha, N. et al (1993) Cytotoxic diterpenoids from the brown alga Dilophus ligulatus. J. Nat. Prod. 56, 1747–1752

    Article  PubMed  CAS  Google Scholar 

  149. Hu, J. et al (2004) Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J. Pharm. Sci. 95, 248–255

    Article  CAS  Google Scholar 

  150. Vetvicka, V. and Yvin, J.C. (2004) Effects of marine beta-1,3 glucan on immune reactions. Int. Immunopharmacol. 4, 721–730

    Article  PubMed  CAS  Google Scholar 

  151. Capon, R.J. et al (1998) Marine nematocides: tetrahydrofurans from a southern Australian brown algae, Notheia anomala. Tetrahedron. 54, 2227–2242

    Article  CAS  Google Scholar 

  152. Ktari, L. and Guyot, M. (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L.) Thivy. J. Appl. Phycol. 11, 511–513

    Article  CAS  Google Scholar 

  153. Hoshino, T. et al (1998) An antivirally active sulfated polysaccharide from Sargassum horneri (Turner) C. Agardh. Biol. Pharm. Bull. 21, 730–734

    Article  PubMed  CAS  Google Scholar 

  154. Kamei, Y. and Tsang, C.K. (2003) Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. Int. J. Dev. Neurosci. 21, 255–262

    Article  PubMed  CAS  Google Scholar 

  155. Tsang, C.K. and Kamei, Y. (2004) Sargaquinoic acid supports the survival of neuronal PC12D cells in a nerve growth factor-independent manner. Eur. J. Pharmacol. 488, 11–18

    Article  PubMed  CAS  Google Scholar 

  156. Numata, A. et al (1992) A cytotoxic principle of the brown alga Sargassum tortile and structures of chromenes. Phytochemistry. 31, 1209–1213

    Article  CAS  Google Scholar 

  157. Gerwick, W.H. et al (1980) Isolation and structure of spatol a potent inhibitor of cell replication from the brown seaweed Spatoglossum schmittii. J. Am. Chem. Soc. 102, 7991–7993

    Article  CAS  Google Scholar 

  158. Wessels, M. et al (1999) A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale. J. Nat. Prod. 62, 927–930

    Article  PubMed  CAS  Google Scholar 

  159. Nahas, R. et al (2007) Radical-scavenging activity of Aegean Sea marine algae. Food Chem. 102, 577–581

    Article  CAS  Google Scholar 

  160. Sheu, J.H. et al (1999) New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. J. Nat. Prod. 62, 224–227

    Article  PubMed  CAS  Google Scholar 

  161. Asari, F. et al (1989) Turbinaric acid, a cytotoxic secosqualene carboxylic acid from the brown alga Turbinaria ornata. J. Nat. Prod. 52, 1167–1169

    Article  PubMed  CAS  Google Scholar 

  162. Sheu, J.H. et al (1997) Cytotoxic sterols from the Formosan brown alga Turbinaria ornata. Planta Med. 63, 571–572

    Article  PubMed  CAS  Google Scholar 

  163. Ishihara, K. et al (1998) Inhibition of icosanoid production in MC/9 mouse mast cells by n-3 polyunsaturated fatty acids isolated from edible marine algae. Biosci. Biotechnol. Biochem. 62, 1412–1415

    Article  PubMed  CAS  Google Scholar 

  164. Pereira, M.S. et al (1999) Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Biol. Chem. 274, 7656–7667

    Article  PubMed  CAS  Google Scholar 

  165. Thorlacius, H. et al (2000) The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P- and L-selectin function in vivo. Eur. J. Clin. Invest. 30, 804–810

    Article  PubMed  CAS  Google Scholar 

  166. Pec, M.K. et al (2003) Induction apoptosis in estrogen dependent and independent cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem. Pharmacol. 65, 1451–1461

    Article  PubMed  CAS  Google Scholar 

  167. Jaspars, M. (1998) Pharmacy of the deep – marine organisms as a source of anticancer agents. In Advances in Drug Discovery Techniques (Harvey, A., ed.), p. 77, Wiley, Chichester

    Google Scholar 

  168. Harada, H. et al (2002) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 22, 2587–2590

    PubMed  CAS  Google Scholar 

  169. Farias, W.R.L. et al (2000) Structure and anticoagulant activity of sulfated galactans – isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem. 275, 29299–29307

    Article  PubMed  CAS  Google Scholar 

  170. Melo, F.R. et al (2004) Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J. Biol. Chem. 279, 20824–20835

    Article  PubMed  CAS  Google Scholar 

  171. Tan, L.T. et al (2000) Cis,cis- and trans,trans-ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J. Org. Chem. 65, 419–425

    Article  PubMed  CAS  Google Scholar 

  172. Davyt, D. et al (1998) A new indole derivative from the red alga Chondria atropurpurea. Isolation, structure determination, and anthelmintic activity. J. Nat. Prod. 61, 1560–1563

    Article  PubMed  CAS  Google Scholar 

  173. Sheu, J.H. et al (1997) Study on cytotoxic oxygenated desmosterols isolated from the red alga Galaxaura marginata. J. Nat. Prod. 60, 900–903

    Article  PubMed  CAS  Google Scholar 

  174. Ohta, K. et al (1998) Sulfoquino­vosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIVreverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem. Pharm. Bull. 46, 684–686

    Article  PubMed  CAS  Google Scholar 

  175. Ktari, L. et al (2000) 16β-Hydroxy-5α-cholestane-3,6-dione, a novel cytotoxic oxysterol from the red alga Jania rubens. Bioorg. Med. Chem. Lett. 10, 2563–2565

    Article  PubMed  CAS  Google Scholar 

  176. Suzuki, M. et al. (1995) Callicladol, a novel bromotriterpene polyether from a Vietnamese species of the red algal genus Laurencia. Chem. Lett. 1045-1046

    Google Scholar 

  177. Juagdan, E.D. et al (1997) Two new chamigranes from an Hawaiian red alga, Laurencia cartilaginea. Tetrahedron. 53, 521–528

    Article  CAS  Google Scholar 

  178. Mohammed, K.A. et al (2004) Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricate that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J. Nat. Prod. 67, 2002–2007

    Article  PubMed  CAS  Google Scholar 

  179. Iliopoulou, D. et al (2002) C15 acetogenins from the red alga Laurencia obtusa. Phytochemistry. 59, 111–116

    Article  PubMed  CAS  Google Scholar 

  180. Suzuki, M. et al (2001) Novel halogenated metabolites from the Malaysian Laurencia pannosa. J. Nat. Prod. 64, 597–602

    Article  PubMed  CAS  Google Scholar 

  181. Pec, M.K. et al (2002) Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates. Int. J. Mol. Med. 10, 605–608

    PubMed  CAS  Google Scholar 

  182. Francisco, M.E.Y. and Erickson, K.L. (2001) Ma’iliohydrin, a cytotoxic chamigrene dibromohydrin from a Philippine Laurencia species. J. Nat. Prod. 64, 790–791

    Article  PubMed  CAS  Google Scholar 

  183. Vairappan, C.S. et al (2001) Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry. 58, 291–297

    Article  PubMed  CAS  Google Scholar 

  184. Fuller, R.W. et al (1994) Isolation and structure/activity features of halomon – related antitumor monoterpenes from the red algae Portieria hornemanii. J. Med. Chem. 37, 4407–4411

    Article  PubMed  CAS  Google Scholar 

  185. Egorin, M.J. et al (1996) Plasma pharmacokinetics, bioavailability, and tissue distribution in CD2F1 mice of halomon, an antitumor halogenated monoterpene isolated from the red algae Portieria hornemanii. Cancer Chemother. Pharmacol. 39, 51–60

    Article  PubMed  CAS  Google Scholar 

  186. Egorin, M.J. et al (1997) In vitro metabolism by mouse and human liver preparations of halomon, an antitumor halogenated monoterpene. Cancer Chemother. Pharmacol. 41, 9–14

    Article  PubMed  CAS  Google Scholar 

  187. Xu, N. et al (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry. 62, 1221–1224

    Article  PubMed  CAS  Google Scholar 

  188. Horgen, F.D. et al (2000) New terpenoid sulfates from the red alga Tricleocarpa fragilis. J. Nat. Prod. 63, 210–216

    Article  PubMed  CAS  Google Scholar 

  189. Hamann, M.T. and Scheuer, P.J. (1993) Kahalalide F: a bioactive depsipeptide from the sacoglossum mollusk Elysia rufescens and the green alga Bryopsis sp. J. Am. Chem. Soc. 115, 5825–5826

    Article  CAS  Google Scholar 

  190. Suárez, Y. et al (2003) Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol. Cancer Ther. 2, 863–872

    PubMed  Google Scholar 

  191. Fischel, J.L. et al (1994) Mise en évidence d’effets antiproliférants de la caulerpényne (de Caulerpa taxifolia). Expérience sur cellules tumorales humaines en culture. Bull. Cancer. 81, 489

    Google Scholar 

  192. Fischel, J.L. et al (1995) Cell growth inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine algae Caulerpa taxifolia. Anticancer Res. 15, 2155–2160

    PubMed  CAS  Google Scholar 

  193. Bitou, N. et al (1999) Screening of lipase inhibitors from marine algae. Lipids. 34, 441–445

    Article  PubMed  CAS  Google Scholar 

  194. Sheu, J.H. et al (1995) Oxygenated clerosterols isolated from the marine alga Codium arabieum. J. Nat. Prod. 58, 1521–1526

    Article  CAS  Google Scholar 

  195. Nika, K. et al (2003) Specific recognition of immune cytokines by sulphated polysaccharides from marine algae. Eur. J. Phycol. 38, 257–264

    Article  CAS  Google Scholar 

  196. Ali, M.S. et al (2002) Steroid and antibacterial steroidal glycosides from marine green alga Codium iyengarii Borgesen. Nat. Prod. Lett. 16, 407–413

    Article  PubMed  CAS  Google Scholar 

  197. Matsubara, K. et al (2000) An anticoagulant proteoglycan from the marine green alga, Codium pungniformis. J. Appl. Phycol. 12, 9–14

    Article  CAS  Google Scholar 

  198. Takamatsu, S. et al (2003) Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 66, 605–608

    Article  PubMed  CAS  Google Scholar 

  199. Govindan, M. et al (1994) New cycloartanol sulfates from the alga Tydemania expeditionis: inhibitors of the protein tyrosine kinase pp60v-src. J. Nat. Prod. 57, 74–78

    Article  PubMed  CAS  Google Scholar 

  200. Awad, N.E. (2000) Biologically active steroid from the green alga Ulva lactuca. Phytother. Res. 14, 641–643

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathia Ioannou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ioannou, E., Roussis, V. (2009). Natural Products from Seaweeds. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_2

Download citation

Publish with us

Policies and ethics