Skip to main content

Introduction to the Different Classes of Natural Products

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

Plants produce an enormous variety of natural products with highly diverse structures. These products are commonly termed “secondary metabolites” in contrast to the “primary metabolites” which are essential for plant growth and development. Secondary metabolites were formerly regarded as “waste products” without physiological function for the plant. With the emergence of the field of chemical ecology about 30 years ago, it became evident, however, that these natural products fulfill important functions in the interaction between plants and their biotic and abiotic environment. They can serve, for example, as defense compounds against herbivores and pathogens, as flower pigments that attract pollinators, or as hormones or signal molecules. In addition to their physiological function in plants, natural products also have a strong impact on human culture and have been used throughout human history as condiments, pigments, and pharma­ceuticals.

This chapter provides an overview about the diversity of secondary metabolites in plants, their multiple biological functions and multi-faceted cultural history. The compounds are classified into four different groups according to their biosynthetic origin: alkaloids, phenylpropanoids, polyketides, and terpenoids. Since more than 200,000 structures of natural products from plants are known, only selected groups and compounds are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam P, Arigoni D, Bacher A, Eisenreich W (2002) Biosynthesis of hyperforin in Hypericum perforatum. J Med Chem 45:4786–4793

    PubMed  CAS  Google Scholar 

  • Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48:953–959

    CAS  Google Scholar 

  • Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44:483–525

    PubMed  CAS  Google Scholar 

  • Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189-196

    PubMed  Google Scholar 

  • Ascherio A, Weisskopf MG, O’Reilly EJ, McCullough ML, Calle EE, Rodriguez C, Thun MJ (2004) Coffee consumption, gender, and Parkinson’s disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. Am J Epidemiol 160:977-984

    PubMed  Google Scholar 

  • Ashihara H, Suzuki T (2004) Distribution and biosynthesis of caffeine in plants. Front Biosci 9:1864–1876

    PubMed  CAS  Google Scholar 

  • Ashihara H, Crozier A (2001) Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci 6:407–413

    PubMed  CAS  Google Scholar 

  • Askitopoulou H, Ramoutsaki IA, Konsolaki E (2000) Analgesia and anesthesia: etymology and literary history of related Greek words. Anesth Analg 91:486–91

    PubMed  CAS  Google Scholar 

  • Atkinson J, Morand P, Arnason JT, Niemeyer HM, Bravo HR (1991) Analogs of the cyclic hydroxamic acid 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (DIMBOA): decomposition to benzoxazolinones and reaction with beta-mercaptoethanol. J Org Chem 56:1788–1800

    CAS  Google Scholar 

  • Aziz E, Nathan B, McKeever J (2000) Anesthetic and analgesic practices in Avicenna’s Canon of Medicine. Am J Chin Med 28:147–151

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

    PubMed  CAS  Google Scholar 

  • Barron D, Ibrahim RK (1996) Isoprenylated flavonoids - a survey. Phytochemistry 43:921–982

    CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    PubMed  CAS  Google Scholar 

  • Benowitz NL (1990) Clinical pharmacology of caffeine. Annu Rev Med 41:277–288

    PubMed  CAS  Google Scholar 

  • Biastoff S, Dräger B (2007) Calystegines. In: Cordell GA (ed) The Alkaloids, vol 64. Academic, New York

    Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    PubMed  CAS  Google Scholar 

  • Bishopp A, Mähönen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869

    PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    PubMed  CAS  Google Scholar 

  • Boonen G, Häberlein H (1998) Influence of genuine kavapyrone enantiomers on the GABA-A binding site. Planta Med 64:504–506

    PubMed  CAS  Google Scholar 

  • Booth M (1998) Opium: a history. MacMillan, New York

    Google Scholar 

  • Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:717–739

    PubMed  Google Scholar 

  • Bravo HR, Lazo W (1993) Antimicrobial activity of cereal hydroxamic acids and related compounds. Phytochemistry 33: 569–591

    CAS  Google Scholar 

  • Bravo HR, Lazo W (1996) Antialgal and antifungal activity of natural hydroxamic acids and related compounds. J Agric Food Chem 44:1569–1571

    CAS  Google Scholar 

  • Bringmann G, Feineis D (2001) Stress-related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. J Exp Bot 52:2015–2022

    PubMed  CAS  Google Scholar 

  • Briskin DP (2000) Medicinal Plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Phys 124:507–514

    CAS  Google Scholar 

  • Bruce-Chwatt LJ (1988) Cinchona and its alkaloids: 350 years. N Y State J Med 88:318–322

    PubMed  CAS  Google Scholar 

  • Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    PubMed  CAS  Google Scholar 

  • Chou AC, Chevli R, Fitch CD (1980) Ferriprotoporphyrin IX fulfils the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19:1543-1549

    PubMed  Google Scholar 

  • Covello PS, Teoh KH, Polichuk DR, Reed DW, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68:1864-1871

    PubMed  Google Scholar 

  • Croteau RB, Davis EM, Ringer KL, Wildung MR (2005) (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92:562–577

    PubMed  CAS  Google Scholar 

  • Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    PubMed  CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Didry N, Dubreuil L, Pinkas M (1994) Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. Pharmazie 49:681–683

    PubMed  CAS  Google Scholar 

  • Dinda B, Debnath S, Harigaya Y (2007a) Naturally occurring iridoids. A review, Part 1. Chem Pharm Bull 55:159–222

    CAS  Google Scholar 

  • Dinda B, Debnath S, Harigaya Y (2007b) Naturally occurring iridoids. A review, Part 2. Chem Pharm Bull 55:689–728

    CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Dräger B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223

    PubMed  Google Scholar 

  • Drawert F, Beier J (1976) Aminosäuren als Vorstufe der Acylseitenkette der Hopfenbitterstoffe. Phytochemistry 15:1693–1694

    CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. CRC Crit Rev Plant Sci 25:417–440

    CAS  Google Scholar 

  • Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. CA Cancer J Clin 57:260–277

    PubMed  Google Scholar 

  • Dumont P, Ingrassia L, Rouzeau S, Ribaucour F, Thomas S, Roland I, Darro F, Lefranc F, Kiss R (2007) The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts. Neoplasia 9:766–76

    PubMed  Google Scholar 

  • Eisner T, Meinwald J (1995) The chemistry of sexual selection. Proc Natl Acad Sci USA 92:50–55

    PubMed  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phyto­chemistry 56:5–51

    CAS  Google Scholar 

  • Feild TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    PubMed  CAS  Google Scholar 

  • François G, Timperman G, Eling W, Assi LA, Holenz J, Bringmann G (1997) Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of dioncophylline C and dioncopeltine A against Plasmodium berghei in vivo. Antimicrob Agents Chemother 41:2533–2539

    PubMed  Google Scholar 

  • Frei H, Lüthy J, Brauchli J, Zweifel U, Würgler FE, Schlatter C (1992) Structure/activity relationships of the genotoxic potencies of sixteen pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem Biol Interact 83:1-22

    PubMed  Google Scholar 

  • Frick S, Kramell R, Schmidt J, Fist AJ, Kutchan TM (2005) Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum cultivars. J Nat Prod 68:666–673

    PubMed  CAS  Google Scholar 

  • Friedmann J, Waller GR (1985) Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J Chem Ecol 9:1099–1106

    Google Scholar 

  • Fujii T, Ohba M (1998) The ipecac alkaloids and related bases. In: Cordell GA (ed) The alkaloids, vol 51. Academic, New York

    Google Scholar 

  • Gates M, Tschudi G (1952) The synthesis of morphine. J Am Chem Soc 74:1109-1110

    Google Scholar 

  • Geiger PL, Hesse K (1833) Darstellung des Atropins. Ann Pharm 5:43–81

    Google Scholar 

  • Gerhäuser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf HR, Frank N, Bartsch H, Becker H (2002) Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther 1:959–969

    PubMed  Google Scholar 

  • Goese M, Kammhuber K, Bacher A, Zenk MH, Eisenreich W (1999) Biosynthesis of bitter acids in hops. A 13C-NMR and 2H-NMR study in the building blocks of humulone. Eur J Biochem 263:447-454

    PubMed  Google Scholar 

  • Goldmann A, Milat ML, Ducrot PH, Lallemand JY, Maille M, Lepingle A, Charpin I, Tepfer D (1990) Tropane derivatives from Calystegia sepium. Phytochemistry 29:2125-2128

    Google Scholar 

  • Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    PubMed  CAS  Google Scholar 

  • Grombacher AW, Russell WA, Guthrie WD (1989) Resistance to first-generation European corn borer (Lepidoptera: Pyralidae) and DIMBOA concentration in midwhorl leaves of the BS9 maize synthetic. J Kans Entomol Soc 62:103–107

    Google Scholar 

  • Güçlü-Üstündag Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258

    PubMed  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    CAS  Google Scholar 

  • Harborne JB, Baxter H (1999) The handbook of natural flavonoids, vols 1 and 2. Wiley, Chichester

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    PubMed  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top Curr Chem 209:207–243

    CAS  Google Scholar 

  • Hartmann T, Sander H, Adolph R, Toppel, G (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 175:82–90

    CAS  Google Scholar 

  • Hasegawa M, Sasaki T, Sadakane K, Tabuchi M, Takeda Y, Kimura M, Fujii Y (2002) Studies for the emetic mechanisms of ipecac syrup (TJN-119) and its active components in ferrets: involvement of 5-hydroxytryptamine receptors. Jpn J Pharmacol 89:113-119

    PubMed  Google Scholar 

  • Hashimoto Y, Shudo K (1996) Chemistry of biologically active benzoxazinoids. Phytochemistry 43:551–559

    PubMed  CAS  Google Scholar 

  • Hegnauer R (1986) Chemotaxonomie der Pflanzen. Vol 7. Birkhäuser Verlag, Basel

    Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoids antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    PubMed  CAS  Google Scholar 

  • Heinrich M (2004) Snowdrops: the heralds of spring and a modern drug for Alzheimer’s disease. Pharmaceutical J 273:905–906

    Google Scholar 

  • Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E (1998) Ethnopharmacology of Mexican Asteraceae (Compositae). Annu Rev Pharmacol Toxicol 38:539–565

    PubMed  CAS  Google Scholar 

  • Heubl G, Bringmann G, Meimberg H (2006) Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales - revisited. Plant Biol 8:821–830

    PubMed  CAS  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    PubMed  CAS  Google Scholar 

  • Hollingsworth RG, Armstrong JW, Campbell E (2002) Caffeine as a repellent for slugs and snails. Nature 417:915–916

    PubMed  CAS  Google Scholar 

  • Hostettmann KA, Marston A (1995) Saponins. Cambridge University Press, Cambridge

    Google Scholar 

  • Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445

    PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    PubMed  CAS  Google Scholar 

  • Howland R, Mycek MJ, Harvey RA, Champe PC (2005) Lippincott’s Illustrated Reviews: Pharmacology, 3rd edn. Lippincott William & Wilkins, Philadelphia, PA

    Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    PubMed  CAS  Google Scholar 

  • Hsiang YH, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082

    PubMed  CAS  Google Scholar 

  • Hsu E (2006) Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol 61:666–670

    PubMed  Google Scholar 

  • Hutchinson CR, Heckendorf AH, Daddona PE, Hagaman E, Wenkert E (1974) Biosynthesis of camptothecin. I. Definition of the overall pathway assisted by carbon-13 nuclear magnetic resonance analysis. J Am Chem Soc 96:5609-5611

    PubMed  Google Scholar 

  • Ieven M, van den Berghe DA, Vlietinck AJ (1983) Plant antiviral agents. IV. Influence of lycorine on growth pattern of three animal viruses. Planta Med 49:109–114

    CAS  Google Scholar 

  • Jin Z (2007) Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 24:886–905

    PubMed  CAS  Google Scholar 

  • Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin - cellular and molecular mechanisms of action. Crit Rev Food Sci Nutri 44:97–111

    CAS  Google Scholar 

  • Jones DA (1988) Cyanogenesis in animal-plant interactions. Ciba Found Symp 140:151–170

    PubMed  CAS  Google Scholar 

  • Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47:155–162

    PubMed  CAS  Google Scholar 

  • Jordan MA, Thrower D, Wilson L (1991) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51:2212–2222

    PubMed  CAS  Google Scholar 

  • Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13:487–492

    PubMed  CAS  Google Scholar 

  • Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL (2005) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Phys 139:363–374

    Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    PubMed  CAS  Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045

    PubMed  CAS  Google Scholar 

  • Kaufman TS, Rúveda EA (2005) The quest for quinine: those who won the battles and those who won the war. Angew Chem Int Ed 44:854–885

    CAS  Google Scholar 

  • Klein RM (1987) The green world: an introduction to plants and people. HarperCollins, New York

    Google Scholar 

  • Knudsen JT, Tollsten L, Bergström G (1993) Floral scents: a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–28

    CAS  Google Scholar 

  • Küenburg B, Czollner L, Fröhlich J, Jordis U (1999) Development of a pilot scale process for the anti-Alzheimer drug (-)-galanthamine using large-scale phenolic oxidative coupling and crystallisation-induced chiral conversion. Org Process Res Dev 3:425–431

    Google Scholar 

  • Ladenburg A (1881) Die natürlich vorkommenden mydriatisch wirkenden Alkaloide. Justus Liebigs Ann Chem 206:274–307

    Google Scholar 

  • Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    PubMed  CAS  Google Scholar 

  • Leete E (1963) The biosynthesis of coniine from four acetate units. J Am Chem Soc 85: 3523–3524

    CAS  Google Scholar 

  • Leete E (1964) Biosynthesis of the hemlock alkaloids. The incorporation of acetate-1-C14 into coniine and conhydrine. J Am Chem Soc 86:2509–2513

    CAS  Google Scholar 

  • Léonce S, Kraus-Berthier L, Golsteyn RM, David-Cordonnier MH, Tardy C, Lansiaux A, Poindessous V, Larsen AK, Pierré A (2006) Generation of replication-dependent double-strand breaks by the novel N2-G-alkylator S23906-1. Cancer Res 66:7203–7210

    PubMed  Google Scholar 

  • Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allaway GP, Freed EO, Wild CT (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100:13555–13560

    PubMed  CAS  Google Scholar 

  • Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–5369

    PubMed  CAS  Google Scholar 

  • López-Meyer M, Nessler CL, McKnight TD (1994) Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med 60:558–560

    PubMed  Google Scholar 

  • Lovett R (2005) Coffee: the demon drink? New Scientist, 24 September

    Google Scholar 

  • Lyß G, Knorr A, Schmidt TJ, Pahl HL, Merfort I (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-κB by directly targeting p65. J Biol Chem 273:33508–33516

    PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies fro transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    PubMed  CAS  Google Scholar 

  • McLachlan A, Kekre N, McNulty J, Pandey S (2005) Pancratistatin: a natural anti-cancer compound that targets mitochondria specifically in cancer cells to induce apoptosis. Apoptosis 10:619-630

    PubMed  Google Scholar 

  • McMahon JB, Currens MJ, Gulakowski RJ, Buckheit RW Jr, Lackman-Smith C, Hallock YF, Boyd MR (1995) Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob Agents Chemother 39:484–488

    PubMed  CAS  Google Scholar 

  • Mein K (1833) Ueber die Darstellung des Atropins in weißen Krystallen. Ann Pharm 6:67–72

    Google Scholar 

  • Milder IE, Arts IC, van de Putte B, Venema DP, Hollman PC (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393-402

    PubMed  Google Scholar 

  • Mo H, Elson CE (2004) Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med 229:567–585

    CAS  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    PubMed  CAS  Google Scholar 

  • Montllor CB, Bernays EA, Barbehenn RV (1990). Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera: Pyralidae), and a host plant Cytisus monspessulanus. J Chem Ecol 16:1853–1865

    CAS  Google Scholar 

  • Müller WE (2003) Current St. John’s wort research from mode of action to clinical efficacy. Pharmacol Res 47:101–109

    PubMed  Google Scholar 

  • Nagle DG, Ferreira D, Zhou YD (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855

    PubMed  CAS  Google Scholar 

  • Nandi R, Maiti M (1985) Binding of sanguinarine to deoxyribonucleic acids of differing base composition. Biochem Pharmacol 34:321–324

    PubMed  CAS  Google Scholar 

  • Noble RL (1990) The discovery of the Vinca alkaloids - chemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    PubMed  CAS  Google Scholar 

  • O’Brien GM, Taylor AJ, Poulter NH (1991) Improved enzymatic assay for cyanogens in fresh and processed cassava. J Sci Food Agric 56:277–289

    Google Scholar 

  • O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    PubMed  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence - a soap story. Trends Plant Sci 1:4–9

    Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    PubMed  CAS  Google Scholar 

  • Pérez FJ, Niemeyer HM (1989) Reaction of DIMBOA with amines. Phytochemistry 28:1831–1834

    Google Scholar 

  • Phillips MACroteau, (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    PubMed  Google Scholar 

  • Pichersky E, Dudareva N (2007) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol 25:105–110

    PubMed  CAS  Google Scholar 

  • Piel J, Donath J, Bandemer K, Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew Chem Int Ed 37: 2478–2481

    CAS  Google Scholar 

  • Plowman T, Rivier L (1983) Cocaine and cinnamoylcocaine content of Erythroxylum species. Ann Bot 51:641–659

    CAS  Google Scholar 

  • Ponte-Sucre A, Faber JH, Gulder T, Kajahn I, Pedersen SE, Schultheis M, Bringmann G, Moll H (2007) Activities of naphthylisoquinoline alkaloids and synthetic analogs against Leishmania major. Antimicrob Agents Chemother 51:188–194

    PubMed  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    PubMed  CAS  Google Scholar 

  • Radad K, Gille G, Liu L, Rausch WD (2006) Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 100:175–186

    PubMed  CAS  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U. Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize. Nature 434:732–737

    PubMed  CAS  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J. 2002. Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228

    PubMed  CAS  Google Scholar 

  • Reynolds T (2005) Hemlock alkaloids from Socrates to poison aloes. Phytochemistry 66:1399–1406

    PubMed  CAS  Google Scholar 

  • Riccioni G, Bucciarelli T, Mancini B, Corradi F, Di Ilio C, Mettei PA, D’Orazio N (2007) Antioxidant vitamin supplementation in cardiovascular diseases. Ann Clin Lab Sci 37:89–95

    PubMed  CAS  Google Scholar 

  • Rivier L (1981) Analysis of alkaloids in leaves of cultivated Erthroxylum and characterization of alkaline substances used during coca chewing. J Ethnopharmacol 3:313–335

    PubMed  CAS  Google Scholar 

  • Ro DK, Paradise EM, Quellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940-943

    PubMed  Google Scholar 

  • Roberts MF (1971) The formation of γ-coniceine from 5-ketooctanal by a transaminase of Conium maculatum. Phytochemistry 10:3057–3060

    CAS  Google Scholar 

  • Röder E (1995) Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50:83–98

    Google Scholar 

  • Rouhi AM, Washington C, Washington EN (2000) Lignin and lignan biosynthesis. Chem Eng News 78:29–32

    Google Scholar 

  • Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696-716

    PubMed  Google Scholar 

  • Sánchez-Pérez R, Jørgensen K, Olsen CE, Dicenta F, Møller BL (2008) Bitterness in almonds. Plant Physiol 146:1040–1052

    PubMed  Google Scholar 

  • Sanderson K (2007) Opiates for the masses. Nature 449:268–269

    PubMed  CAS  Google Scholar 

  • Schiff P (2002) Opium and its alkaloids. Am J Pharm Edu 66

    Google Scholar 

  • Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565

    PubMed  CAS  Google Scholar 

  • Schmidt E (1892) Ueber Scopolamin. Arch Pharm 230:207–231

    Google Scholar 

  • Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    PubMed  CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochemistry Rev 2:3–16

    CAS  Google Scholar 

  • Seigler DS (1991) Cyanide and cyanogenic glucosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, San Diego, CA

    Google Scholar 

  • Seigler DS (1998) Iridoid monoterpenes. In: Plant secondary metabolism. Kluwer, Dordrecht

    Google Scholar 

  • Selmar D (1999) Biosynthesis of cyanogenic glycosides, glucosinolates and non-protein amino acids. In: Wink M (ed) Biochemistry of plant secondary metabolism. Sheffield Acad Press, England

    Google Scholar 

  • Selmar D, Lieberei R, Biehl B (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol 86:711–716

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot (Lond) 101:5–18

    CAS  Google Scholar 

  • Sheriha GM, Rapoport H (1976) Biosynthesis of Camptotheca acuminata alkaloids. Phytochemistry 15:505–508

    CAS  Google Scholar 

  • Sicker D, Frey M, Gierl A (2000) Role of natural benzoxazinones in the survival strategy of plants. Int Rev Cytol 198:319–346

    PubMed  CAS  Google Scholar 

  • Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    PubMed  CAS  Google Scholar 

  • Siritunga D, Sayre R (2007) Transgenic approaches for cyanogen reduction in cassava. AOAC Int. 90:1450–1455

    CAS  Google Scholar 

  • Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100

    PubMed  CAS  Google Scholar 

  • Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P (2007) Molecular mechanism of emodin action: transition from laxative lngredient to an antitumor agent. Med Res Rev 27:591–608

    PubMed  CAS  Google Scholar 

  • Stevens JF, Page JE (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65:1317–1330

    PubMed  CAS  Google Scholar 

  • Stirling IR, Freer IKA, Robins DJ (1997) Pyrrolizidine alkaloid biosynthesis. Incorpora-tion of 2-aminobutanoic acid labelled with 13C or 2H into the senecic acid portion of rosmarinine and senecionine. J Chem Perkin Trans I 5:677–680

    Google Scholar 

  • Straub KD, Carver P (1975) Sanguinarine, inhibitor of Na-K dependent ATP’ase. Biochem Biophys Res Commun 62:913–922

    PubMed  CAS  Google Scholar 

  • Sudo H, Yamakawa T, Yamazaki M, Aimi N, Saito K (2002) Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnol Lett 24:359–363

    CAS  Google Scholar 

  • Sullivan DJ Jr, Gluzman IY, Russell D G, Goldberg DE (1996) On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci USA 93:11865–11870

    PubMed  CAS  Google Scholar 

  • Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agric Food Chem 53:860-870

    PubMed  CAS  Google Scholar 

  • Szlávik L, Gyuris A, Minárovits J, Forgo P, Molnár J, Hohmann J (2004) Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med 70:871–873

    PubMed  Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    PubMed  CAS  Google Scholar 

  • Tepfer D, Goldmann A, Pamboukdjian N, Maille M, Lepingle A, Chevalier D, Dénarié J, Rosenberg C (1988) A Plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. J Bacteriol 170:1153–1161

    PubMed  CAS  Google Scholar 

  • Thomson RH (1987) Naturally occurring quinones, vol III, Chapman & Hall, London

    Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    CAS  Google Scholar 

  • Tokunaga T, Takada N, Ueda M (2004) Mechanism of antifeedant activity of plumbagin, a compound concerning the chemical defense in carnivorous plant. Tetrahedron Lett 45:7115–7119

    CAS  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724

    PubMed  CAS  Google Scholar 

  • Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    CAS  Google Scholar 

  • U.S. Preventive Services Task Force (2003) Routine vitamin supplementation to prevent cancer and cardiovascular disease: recommendations and rationale. Ann Intern Med 139:51-55

    Google Scholar 

  • Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    PubMed  CAS  Google Scholar 

  • Vincent RM, López-Meyer M, McKnight TD, Nessler CL (1997) Sustained harvest of camptothecin from the leaves of Camptotheca acuminata. J Nat Prod 60:618–619

    PubMed  CAS  Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggin P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    PubMed  CAS  Google Scholar 

  • Weber S, Eisenreich W, Bacher A, Hartmann T (1998) Pyrrolizidine alkaloids of the lycopsamine type: biosynthesis of trachelanthic acid. Phytochemistry 50:1005–1014

    Google Scholar 

  • Weng XL, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    PubMed  CAS  Google Scholar 

  • Werner I, Bacher A, Eisenreich W (1997) Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi. J Biol Chem 272:25474–25482

    PubMed  CAS  Google Scholar 

  • White NJ (2008) Qinghaosu (Artemisinin): the price of success. Science 320:330–334

    PubMed  CAS  Google Scholar 

  • White SM, Lambe CJT (2003) The pathophysiology of cocaine abuse. J Clin Forensic Med 10:27–39

    PubMed  Google Scholar 

  • Wink M (2002) Production of quinolizidine alkaloids in in vitro cultures of legumes. In: Nagata, Ebizuka Y (eds) Biotechnology in agriculture and forestry, vol 51: medicinal and aromatic plants XII. Springer, Heidelberg

    Google Scholar 

  • Wink M (2003) Allelochemical properties of quinolizidine alkaloids. In: Macías F, Galindo JC, Molinillo JM, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wink M, Witte L (1983) Evidence for a wide-spread occurrence of the genes of quinolizidine alkaloid biosynthesis. FEBS Lett 159:196–200

    CAS  Google Scholar 

  • Wink M, Witte L (1984) Turnover and transport of quinolizidine alkaloids: diurnal variation of lupanine in the phloem sap, leaves and fruits of Lupinus albus L. Planta 161:519–524

    CAS  Google Scholar 

  • Wink M, Witte L (1985) Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell suspension cultures. Z Naturforschung 40c:767–775

    CAS  Google Scholar 

  • Wink M, Witte L (1991) Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae). Entomol Gen 15:237–254

    Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    PubMed  CAS  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–48564

    PubMed  CAS  Google Scholar 

  • Wittstock U, Burow M (2007) Tipping the scales - specifier proteins in glucosinolate hydrolysis. IUBMB Life 59:744–751

    PubMed  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz KT, Helfand SL, Tatar M, Sinclair DA (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    PubMed  CAS  Google Scholar 

  • Woodward RB, Doering WE (1944) The total synthesis of quinine. J Am Chem Soc 66:849

    Google Scholar 

  • World Drug Report of the United Nations (2007)

    Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    PubMed  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Møller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468

    PubMed  CAS  Google Scholar 

  • Zenk MH, Jünger M (2007) Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry 68:2757–2772

    PubMed  CAS  Google Scholar 

  • Zhou SF, Xue CC, Yu XQ, Wang G (2007) Metabolic activation of herbal and dietary constituents and its clinical and toxicological implications: an update. Curr Drug Metabol 8:526–553

    CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni M. Kutchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Springob, K., Kutchan, T.M. (2009). Introduction to the Different Classes of Natural Products. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_1

Download citation

Publish with us

Policies and ethics