Skip to main content

Integration of Energy Metabolism and Control of Apoptosis in Tumor Cells

  • Chapter
  • First Online:
Mitochondria and Cancer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assaily, W. and Benchimol, S. 2006.Differential utilization of two ATP-generating pathways is regulated by p53. Cancer Cell, 10(1): 4–6.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi, R., et al. 2006.PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature, 442(7104): 779–85.

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar, P.T. and Hay, N. 2007.The two TORCs and Akt. Dev Cell, 12(4): 487–502.

    Article  CAS  PubMed  Google Scholar 

  • Bijur, G.N. and Jope, R.S. 2003.Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport, 14(18): 2415–9.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet, S., et al. 2007.A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11(1): 37–51.

    Article  CAS  PubMed  Google Scholar 

  • Boren, J., et al. 2001.Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem, 276(41): 37747–53.

    CAS  PubMed  Google Scholar 

  • Brdiczka, D., et al. 1998.The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors, 8(3–4): 235–42.

    Article  CAS  PubMed  Google Scholar 

  • Burgering, B.M. and Kops, G.J. 2002.Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 27(7): 352–60.

    Article  CAS  PubMed  Google Scholar 

  • Buzzai, M., et al. 2007.Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res, 67(14): 6745–52.

    Article  CAS  PubMed  Google Scholar 

  • Calissano, P., et al. 1985.Synthesis and content of a DNA-binding protein with lactic dehydrogenase activity are reduced by nerve growth factor in the neoplastic cell line PC12. Exp Cell Res, 161(1): 117–29.

    Article  CAS  PubMed  Google Scholar 

  • Cantley, L.C. and Neel, B.G. 1999.New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA, 96(8): 4240–5.

    Article  CAS  PubMed  Google Scholar 

  • Carling, D., 2004.The AMP-activated protein kinase cascade—A unifying system for energy control. Trends Biochem Sci, 29(1): 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Casey, J.R., 2006.Why bicarbonate? Biochem Cell Biol, 84(6): 930–9.

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo, A., et al. 1985.Nuclear localization of a lactic dehydrogenase with single-stranded DNA-binding properties. Exp Cell Res, 161(1): 130–40.

    Article  CAS  PubMed  Google Scholar 

  • Chesney, J., 2006.6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care, 9(5): 535–9.

    Article  CAS  PubMed  Google Scholar 

  • Choo, A.Y. and Blenis, J. 2006.TORgeting oncogene addiction for cancer therapy. Cancer Cell, 9(2): 77–9.

    Article  CAS  PubMed  Google Scholar 

  • Discher, D.J., et al. 1998.Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element. J Biol Chem, 273(40): 26087–93.

    Article  CAS  PubMed  Google Scholar 

  • Dombrauckas, J.D., Santarsiero, and B.D. Mesecar, A.D. 2005.Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 44(27): 9417–29.

    Article  CAS  PubMed  Google Scholar 

  • Edinger, A.L. and Thompson, C.B. 2002.Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell, 13(7): 2276–88.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J., et al. 2006.The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol Pharmacol, 70(6): 2108–15.

    Article  CAS  PubMed  Google Scholar 

  • Fantin, V.R., St-Pierre, and J. Leder, P. 2006.Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9(6): 425–34.

    Article  CAS  PubMed  Google Scholar 

  • Fell, D., 1997:Understanding the Control of Metabolism. Portland Press, London.

    Google Scholar 

  • Fell, D.A., 1998.Increasing the flux in metabolic pathways: A metabolic control analysis perspective. Biotechnol Bioeng, 58(2–3): 121–4.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, K., et al. 2007.Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109(9): 3812–9.

    Article  CAS  PubMed  Google Scholar 

  • Forde, J.E. and Dale, T.C. 2007.Glycogen synthase kinase 3: A key regulator of cellular fate. Cell Mol Life Sci, 64(15): 1930–44.

    Article  CAS  PubMed  Google Scholar 

  • Frey, T.G. and Mannella, C.A. 2000.The internal structure of mitochondria. Trends Biochem Sci, 25(7): 319–24.

    Article  CAS  PubMed  Google Scholar 

  • Gatenby, R.A. and Gillies, R.J. 2004.Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4(11): 891–9.

    Article  CAS  PubMed  Google Scholar 

  • Granville, D.J. and Gottlieb, R.A. 2003.The mitochondrial voltage-dependent anion channel (VDAC) as a therapeutic target for initiating cell death. Curr Med Chem, 10(16): 1527–33.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, D.G., 2004.The AMP-activated protein kinase pathway—New players upstream and downstream. J Cell Sci, 117(Pt 23): 5479–87.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, D.G., 2005.New roles for the LKB1→AMPK pathway. Curr Opin Cell Biol, 17(2): 167–73.

    Article  CAS  PubMed  Google Scholar 

  • Hardt, P.D., et al. 2004.Faecal tumour M2 pyruvate kinase: A new, sensitive screening tool for colorectal cancer. Br J Cancer, 91(5): 980–4.

    CAS  PubMed  Google Scholar 

  • Hay, N., 2005.The Akt-mTOR tango and its relevance to cancer. Cancer Cell, 8(3): 179–83.

    Article  CAS  PubMed  Google Scholar 

  • Imai, K., et al. 2006.LKB1, an upstream AMPK kinase, regulates glucose and lipid metabolism in cultured liver and muscle cells. Biochem Biophys Res Commun, 351(3): 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Inoki, K., et al. 2002.TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 4(9): 648–57.

    Article  CAS  PubMed  Google Scholar 

  • Inoki, K., Zhu, and T. Guan, K.L. 2003.TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5): 577–90.

    Article  CAS  PubMed  Google Scholar 

  • Inoki, K., et al. 2006.TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5): 955–68.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R.G., et al. 2005.AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell, 18(3): 283–93.

    Article  CAS  PubMed  Google Scholar 

  • Kacser, H. and Burns, J.A. 1973.The control of flux. Symp Soc Exp Biol, 27: 65–104.

    CAS  PubMed  Google Scholar 

  • Kato, K., et al. 2002.Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene, 21(39): 6082–90.

    Article  CAS  PubMed  Google Scholar 

  • Kim, A.H., et al. 2001.Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol, 21(3): 893–901.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.W. and Dang, C.V. 2005.Multifaceted roles of glycolytic enzymes. Trends Biochem Sci, 30(3): 142–50.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.W. and Dang, C.V. 2006.Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res, 66(18): 8927–30.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.W., et al. 2006.HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 3(3): 177–85.

    Article  PubMed  Google Scholar 

  • King, A., Selak, and M.A. Gottlieb, E. 2006.Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 25(34): 4675–82.

    Article  CAS  PubMed  Google Scholar 

  • Kruse, J.P. and Gu, W. 2006.p53 aerobics: The major tumor suppressor fuels your workout. Cell Metab, 4(1): 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, Y., et al. 2007.Tumour M2-pyruvate kinase: A gastrointestinal cancer marker. Eur J Gastroenterol Hepatol, 19(3): 265–76.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., et al. 2004.TSC2: Filling the GAP in the mTOR signaling pathway. Trends Biochem Sci, 29(1): 32–8.

    Article  PubMed  Google Scholar 

  • Luo, Z., et al. 2005.AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci, 26(2): 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Ma, W., et al.,A pivotal role for p53: Balancing aerobic respiration and glycolysis. J Bioenerg Biomembr, 2007.

    Google Scholar 

  • MacKenzie, E.D., et al. 2007.Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol, 27(9): 3282–9.

    Article  CAS  PubMed  Google Scholar 

  • Majewski, N., et al. 2004.Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell, 16(5): 819–30.

    Article  CAS  PubMed  Google Scholar 

  • Manning, B.D. and Cantley, L.C. 2007.AKT/PKB signaling: Navigating downstream. Cell, 129(7): 1261–74.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti, P., et al. 1996.Mitochondrial permeability transition is a central coordinating event of apoptosis. Journal of Experimental Medicine, 184(3): 1155–60.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, S., 2006.Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: A nutritional perspective of diabetes, obesity, and cancer. Sci STKE, 2006(346): re7.

    Article  PubMed  Google Scholar 

  • Mathupala, S.P., Heese, and C. Pedersen, P.L. 1997.Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem, 272(36): 22776–80.

    Article  CAS  PubMed  Google Scholar 

  • Mathupala, S.P., Ko, and Y.H. Pedersen, P.L. 2006.Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 25(34): 4777–86.

    Article  CAS  PubMed  Google Scholar 

  • Matoba, S., et al. 2006.p53 regulates mitochondrial respiration. Science, 312(5780): 1650–3.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek, S., Boschek, and C.B. Eigenbrodt, E. 1997.The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr, 29(4): 315–30.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek, S., et al. 2002.Pyruvate kinase type M2: A crossroad in the tumor metabolome. Br J Nutr, 87(Suppl 1): S23–9.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek, S., et al. 2005.Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol, 15(4): 300–8.

    Article  CAS  PubMed  Google Scholar 

  • Minchenko, A., et al. 2002.Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem, 277(8): 6183–7.

    Article  CAS  PubMed  Google Scholar 

  • Modur, V., et al. 2002.FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem, 277(49): 47928–37.

    Article  CAS  PubMed  Google Scholar 

  • Moll, U.M., Marchenko, and N. Zhang, X.K. 2006.p53 and Nur77/TR3—Transcription factors that directly target mitochondria for cell death induction. Oncogene, 25(34): 4725–43.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sanchez, R., et al. 2007.Energy metabolism in tumor cells. Febs J, 274(6): 1393–418.

    Article  CAS  PubMed  Google Scholar 

  • Papandreou, I., et al. 2006.HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 3(3): 187–97.

    Article  CAS  PubMed  Google Scholar 

  • Pastorino, J.G. and Hoek, J.B. 2003.Hexokinase II: The integration of energy metabolism and control of apoptosis. Curr Med Chem, 10(16): 1535–51.

    Article  CAS  PubMed  Google Scholar 

  • Pastorino, J.G., Shulga, and N. Hoek, J.B. 2002.Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem, 277(9): 7610–8.

    Article  CAS  PubMed  Google Scholar 

  • Pastorino, J.G., Hoek, and J.B. Shulga, N. 2005.Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res, 65(22): 10545–54.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, P.L., et al. 2002.Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta, 1555(1–3): 14–20.

    CAS  PubMed  Google Scholar 

  • Pelicano, H., et al. 2006.Glycolysis inhibition for anticancer treatment. Oncogene, 25(34): 4633–46.

    Article  CAS  PubMed  Google Scholar 

  • Plas, D.R. and Thompson, C.B. 2005.Akt-dependent transformation: There is more to growth than just surviving. Oncogene, 24(50): 7435–42.

    Article  CAS  PubMed  Google Scholar 

  • Provent, P., et al. 2007.Serial in vivo spectroscopic nuclear magnetic resonance imaging of lactate and extracellular pH in rat gliomas shows redistribution of protons away from sites of glycolysis. Cancer Res, 67(16): 7638–45.

    Article  CAS  PubMed  Google Scholar 

  • Reiling, J.H. and Hafen, E. 2004.The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev, 18(23): 2879–92.

    Article  CAS  PubMed  Google Scholar 

  • Roe, J.S., et al. 2006.p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell, 22(3): 395–405.

    Article  CAS  PubMed  Google Scholar 

  • Rutter, G.A., Da Silva Xavier, and G. Leclerc, I. 2003.Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J, 375(Pt 1): 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer, R., et al. 2005.REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase. Oncogene, 24(7): 1138–49.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G.L.,HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr, 2007.

    Google Scholar 

  • Shaw, R.J., 2006.Glucose metabolism and cancer. Curr Opin Cell Biol, 18(6): 598–608.

    Article  CAS  PubMed  Google Scholar 

  • Shim, H., et al. 1997.c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc Natl Acad Sci USA, 94(13): 6658–63.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Narita, and M. Tsujimoto, Y. 1999.Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 399(6735): 483–7.

    Article  CAS  PubMed  Google Scholar 

  • Stetak, A., et al. 2007.Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res, 67(4): 1602–8.

    Article  CAS  PubMed  Google Scholar 

  • Sui, D. and Wilson, J.E. 1997.Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: Intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein. Arch Biochem Biophys, 345(1): 111–25.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., et al. 2006.Overexpression of von Hippel–Lindau tumor suppressor protein and antisense HIF-1alpha eradicates gliomas. Cancer Gene Ther, 13(4): 428–35.

    Article  CAS  PubMed  Google Scholar 

  • Sunters, A., et al. 2003.FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem, 278(50): 49795–805.

    Article  CAS  PubMed  Google Scholar 

  • Swinnen, J.V., Brusselmans, and K. Verhoeven, G. 2006.Increased lipogenesis in cancer cells: New players, novel targets. Curr Opin Clin Nutr Metab Care, 9(4): 358–65.

    Article  CAS  PubMed  Google Scholar 

  • Tomita, K., et al. 2005.AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats. Alcohol Clin Exp Res, 29(12 Suppl): 240S–5S.

    CAS  PubMed  Google Scholar 

  • Vander Heiden, M.G., et al. 2001.Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol, 21(17): 5899–912.

    Article  CAS  PubMed  Google Scholar 

  • Vyssokikh, M.Y., et al. 2002.Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect. Mol Biol Rep, 29(1–2): 93–6.

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O., 1930:Metabolism of Tumors. Arnold Constable, London.

    Google Scholar 

  • Watcharasit, P., et al. 2003.Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem, 278(49): 48872–9.

    Article  CAS  PubMed  Google Scholar 

  • Weinhouse, S., 1972.Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture. Cancer Res, 32(10): 2007–16.

    CAS  PubMed  Google Scholar 

  • Williams, K.R., Reddigari, and S. Patel, G.L. 1985.Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proc Natl Acad Sci USA, 82(16): 5260–4.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J.E., 2003.Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J Exp Biol, 206(Pt 12): 2049–57.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J.E., 1995.Hexokinases. Rev Physiol Biochem Pharmacol, 126: 65–198.

    Article  CAS  PubMed  Google Scholar 

  • Woods, A., et al. 2003.LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol, 13(22): 2004–8.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M., et al. 2007.Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol, 292(1): C125–C36.

    Article  CAS  PubMed  Google Scholar 

  • Xie, G.C. and Wilson, J.E. 1988.Rat brain hexokinase: The hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch Biochem Biophys, 267(2): 803–10.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., et al. 2001.PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell, 7(3): 673–82.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., et al. 2007.HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11(5): 407–20.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., et al. 2004.Regulation of FOXO3a by brain-derived neurotrophic factor in differentiated human SH-SY5Y neuroblastoma cells. Brain Res Mol Brain Res, 126(1): 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Zuurbier, C.J., Eerbeek, and O. Meijer, A.J. 2005.Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol, 289(1): H496–H9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Pastorino .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Pastorino, J.G., Hoek, J.B. (2009). Integration of Energy Metabolism and Control of Apoptosis in Tumor Cells. In: Mitochondria and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84835-8_7

Download citation

Publish with us

Policies and ethics