Skip to main content
Book cover

Petunia pp 343–363Cite as

Impact of Retroelements in Shaping the Petunia Genome

  • Chapter

Abstract

Retroelements, defined by their dependence on reverse transcription for replication, are found in the genomes of bacteria, fungi, animals and plants. This chapter summarizes current knowledge about the structure, function and evolution of representatives from two retroelement groups identified in Petunia. The presence of both a viral retroelement – an inducible endogenous plant pararetrovirus, EPRV- and non-viral retroelements in the form of LTR-retrotransposons makes Petunia an ideal model system to study possible retroelement interactions. Phylogenetic relationships have been determined and chromosomal co-localization of EPRV and Metaviridae, one group of LTR-retrotransposons, has been demonstrated. The impact of partly overlapping replication pathways on element interference is discussed. While studies in Petunia and related species have led to tremendous progress in our understanding of these elements we are just beginning to comprehend the consequences of their presence and activities in their hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arabidopsis Genome Initiative (AGI 2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Beguiristain, T., Grandbastien, M.-A., Puigdomenech, P. and Casacuberta, J.M. (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco: Consequences for retrotransposon control and evolution in plants. Plant Physiol. 127, 212–221.

    Article  CAS  PubMed  Google Scholar 

  • Blume, B., Barry, C.S., Hamilton, A.J., Bouzayen, M. and Grierson, D. (1997) Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol. Gen. Genet. 254, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Camirand, A. and Brisson, N. (1990) The complete nucleotide sequence of the Tst1 retrotransposon of potato. Nucl. Acids Res. 18, 4929.

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta, J.M., Vernhettes, S., Audeon, C. and Grandbastien, M.-A. (1997) Quasispecies in retrotransposons: A role for sequence variability in Tnt1 evolution. Genetica 100, 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Eickbush, T.H. and Malik, H.S. (2002) Origins and evolution of retrotransposons. In: N.L. Craig, R. Craigie, M. Gellert, and A.M. Lambowitz (Eds.), Mobile DNA II. ASM Press, Washington, DC, pp. 1111–1146.

    Google Scholar 

  • Eickbush, T.H., Boeke, J.D., Sandmeyer, S.B. and Voytas, D.F. (2005) Metaviridae. In: C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Dessleberg and L.A. Ball (Eds.), Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp. 409–420.

    Google Scholar 

  • Ellis, T.H.N., Poyser, S.J., Knox, M.R., Vershinin, A.V. and Ambrose, M.J. (1998) Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Mol. Gen. Genet. 260, 9–19.

    CAS  PubMed  Google Scholar 

  • Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U. and Ball, L.A. (2005) Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego.

    Google Scholar 

  • Feschotte, C., Jiang, N. and Wessler, S.R. (2002) Plant transposable elements: Where genetics meets genomics. Nature Rev. 3, 329–341.

    CAS  Google Scholar 

  • Flavell, A.J., Smith, D.B. and Kumar, A. (1992) Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol. Gene Genet. 231, 233–242.

    CAS  Google Scholar 

  • Flavell, A.J., Knox, M., Pearce, S.R. and Ellis, T.H.N. (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16, 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Friesen, N., Brandes, A. and Heslop-Harrison, J.S. (2001) Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers. Mol. Biol. Evol. 18, 1176–1188.

    CAS  PubMed  Google Scholar 

  • Geijskes, R.J., Braithwaite, K.S., Smith, G.R., Dale, J.L. and Harding, R.M. (2004) Sugarcane bacilliform virus encapsidates genome concatamers and does not appear to integrate into the Saccharum officinarum genome. Arch. Virol. 149, 791–798.

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien, M.-A., Spielmann, A. and Caboche, M. (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337, 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien, M.-A., Spielmann, A., Pouteau, S., Huttner, E., Longuet, M., Kunert, K., Meyer, C., Rouze, P. and Caboche, M. (1991) Characterization of mobile endogenous copia-like transposable elements in the genome of Solanaceae. In: R.G. Hermann and B. Larkins (Eds.), Plant Molecular Biology 2. Plenum Press, NY, pp. 333–343.

    Google Scholar 

  • Grandbastien, M.-A., Lucas, H., Mhiri, C., Morel, J.-B., Vernhettes, S. and Casacuberta, J.M. (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defense response. Genetica 100, 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien, M.-A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3, 181–187.

    Article  Google Scholar 

  • Grandbastien, M.-A., Audeon, C., Bonnivard, E., Casacuberta, J.M., Chalhoub, B., Costa, A.P.P., Le, Q.H., Melayah, D., Petit, M., Poncet, C., Tam, S.M., Van Sluys, M.A. and Mhiri, C. (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 110, 229–241.

    CAS  Google Scholar 

  • Gregor, W., Mette, M.F., Staginnus, C., Matzke, M.A. and Matzke, A.J. (2004) A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol. 134, 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  • Guyot, R., Cheng, X., Su, Y., Cheng, Z., Schlagenhauf, E., Keller, B. and Ling, H.-Q. (2005) Complex organization and evolution of the tomato pericentromeric region at the FER gene locus. Plant Physiol. 138, 1205–1215.

    Article  CAS  PubMed  Google Scholar 

  • Hanin, M. and Paszkowski, J. (2003) Plant genome modification by homologous recombination. Curr. Opin. Plant Biol. 6, 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, C.N. and Heslop-Harrison, J.S. (2004) Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv. Bot. Res. 41, 165–193.

    Article  CAS  Google Scholar 

  • Hansen, C.N., Harper, G. and Heslop-Harrison, J.S. (2005) Characterization of pararetrovirus-like sequences in the genome of potato (Solanum tuberosum). Cytogenet. Genome Res. 110, 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Harper, G., Hull, R., Lockhart, B. and Olszewski, N. (2002) Viral sequences integrated into plant genomes. Annu. Rev Phytopathol 40, 119–136.

    Article  CAS  PubMed  Google Scholar 

  • Havecker, E.R., Gao, X. and Voytas, D.F. (2004) The diversity of LTR retrotransposons. Genome Biol. 5, 1–6.

    Article  Google Scholar 

  • Havecker, E.R., Gao, X. and Voytas, D.F. (2005) The sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to Dynein light chain 8. Plant Physiol. 139, 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison, J.S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A.V., Alkhimova, E.G., Kamm, A., Doudrick, R.L., Schwarzacher, T., Katsiotis, A., Kubis, S., Kumar, A., Pearce, S.R., Flavell, A.J. and Harrison, G.E. (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison, J.S. (2000) Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. Plant Cell 12, 617–635.

    Article  CAS  PubMed  Google Scholar 

  • Hirochika, H. (1993) Activation of tobacco retrotransposon during tissue culture. EMBO J. 12, 2521–2528.

    CAS  PubMed  Google Scholar 

  • Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. and Kanda, M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci., USA 93, 7783–7788.

    Article  CAS  Google Scholar 

  • Hohn, T. and Richert-Pöggeler, K.R. (2006) Recent advances in DNA virus replication. In: K.L. Hefferon (Ed.), Recent Advances in DNA Virus Replication. Research Signpost 37/661. Kerala, India, pp. 289–319

    Google Scholar 

  • Hohn, T., Richert-Pöggeler, K.R., Staginnus, C., Harper, G., Schwarzacher, T., Teo, C.H., Teycheney, P.-Y., Iskra-Caruana, M.L. and Hull, R. (2008) Evolution of integrated plant viruses. In: M. Rossinck (Ed.), Plant Virus Evolution. Springer-Verlag, Berlin, pp. 53–82.

    Chapter  Google Scholar 

  • Hull, R., Harper, G. and Lockhart, B. (2000) Viral sequences integrated into plant genomes. Trends Plant Sci. 5, 362–365.

    Article  CAS  PubMed  Google Scholar 

  • Hull, R. (2002) Plant Virology. Academic Press, London.

    Google Scholar 

  • Jääskeläinen, M., Mykkanen, A.H., Arna, T., Vicient, C.M., Suoniemi, A., Kalendar, R., Savilahti, H. and Schulman, A.H. (1999) Retrotransposon BARE-1: Expression of encoded proteins and formation of virus-like particles in barley cells. Plant J. 20, 413–422.

    Article  PubMed  Google Scholar 

  • Jakowitsch, J., Mette, M.F., van der Winden, W.J., Matzke, M.A. and Matzke, A.J. (1999) Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc. Natl. Acad. Sci., USA 96, 13241–13246.

    Article  CAS  PubMed  Google Scholar 

  • Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulman, A.H. (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci., USA 97, 6603–6607.

    Article  CAS  PubMed  Google Scholar 

  • Kamm, A., Doudrick, R.L., Heslop-Harrison, J.S. and Schmidt, T. (1996) The genomic and physical organization of Ty1-copia–like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci., USA 93, 2708–2713.

    Article  CAS  PubMed  Google Scholar 

  • Katsiotis, A., Schmidt, T. and Heslop-Harrison, J.S. (1996) Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 39, 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Kubis, S.E., Heslop-Harrison, J.S., Desel, C. and Schmidt, T. (1998) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol. Biol. 36, 821–831.

    Google Scholar 

  • Kulcheski, F.R., Muschner, V.C., Lorenz-Lemke, A.P., Stehmann, J.R., Bonatto, S.L., Salzano, F.M. and Freitas, L.B. (2006) Molecular phylogenetic analysis of Petunia juss. (Solanaceae). Genetica 126, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A. and Bennetzen, J.L. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479–532.

    Article  CAS  PubMed  Google Scholar 

  • Laten, H.M., Majumdar, A. and Gaucher, E.A. (1998) SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl. Acad. Sci, USA 95, 6897–6902.

    Article  CAS  PubMed  Google Scholar 

  • Leitch, I.J., Soltis, D.E., Soltis, P.S. and Bennett, M.D. (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95, 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Lockhart, B.E., Menke, J., Dahal, G. and Olszewski, N.E. (2000) Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J. Gen.Virol. 81, 1579–1585.

    CAS  PubMed  Google Scholar 

  • Manetti, M.E., Rossi, M., Costa, A.P.P., Clausen, A.M. and Van Sluys, M.-A. (2007) Radiation of the Tnt1 retrotransposon superfamily in three Solanaceae genera. BMC Evol. Biol. 7, 34.

    Article  PubMed  Google Scholar 

  • Mao, L., Begum, D., Goff, S.A. and Wing, R.A. (2001) Sequence and analysis of the tomato JOINTLESS locus. Plant Physiol. 126, 1331–1340.

    Article  CAS  PubMed  Google Scholar 

  • Matsubara, K., Kodama, H., Kokubun, H., Watanabe, H. and Ando, T. (2005) Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene 358, 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Matzke, M., Gregor, W., Mette, M.F., Aufsatz, W., Kanno, T., Jakowitsch, J. and Matzke, A.J.M. (2004) Endogenous pararetroviruses of allotetraploid Nicotiana tabacum and its diploid progenitors, N. sylvestris and N. tomentosiformis. Biol. J. Linnean Soc. 82, 627–638.

    Article  Google Scholar 

  • Mette, M.F., Kanno, T., Aufsatz, W., Jakowitsch, J., van der Winden, W.J., Matzke, M.A. and Matzke, A.J. (2002) Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J. 21, 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Mishiba, K.-I., Ando, T., Mii, M., Watanabe, H., Kokubun, H., Hashimoto, G. and Marchesi, E. (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann. Bot. 85, 665–673.

    Article  CAS  Google Scholar 

  • Mueller, L.A., Tanksley, S.D., Giovannoni, J.J., van Eck, J., Stack, S., Choi, D., Kim, B.D., Chen, M., Cheng, Z., Li, C. et al. (2005) The tomato sequencing project: The first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genom. 6, 153–158.

    CAS  Google Scholar 

  • Noreen, F., Akbergenov, R., Hohn, T. and Richert-Pöggeler, K.R. (2007) Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant J. 50, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Peterson-Burch, B.D., Wright, D.A., Laten, H.M. and Voytas, D.F. (2000) Retroviruses in plants? Trends Genet. 16, 151–152.

    CAS  Google Scholar 

  • Peterson-Burch, B.D. and Voytas, D.F. (2002) Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol. Biol. Evol. 19, 1832–1845.

    CAS  PubMed  Google Scholar 

  • Pouteau, S., Huttner, E., Grandbastien, M.A. and Caboche, M. (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10, 1911–1918.

    CAS  PubMed  Google Scholar 

  • Puchta, H. (2005) The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Richert, K.R. (1992) Untersuchungen zur Charakterisierung des Petunia Vein Clearing Virus (PVCV), ein Samenübertragbares Pararetrovirus. Ph.D. Thesis Georg-August-University, Göttingen, Germany.

    Google Scholar 

  • Richert-Pöggeler, K.R. and Shepherd, R.J. (1997) Petunia vein clearing virus: A plant pararetrovirus with the core sequence for an integrase function. Virol. 236, 137–146.

    Article  Google Scholar 

  • Richert-Pöggeler, K.R., Noreen, F., Schwarzacher, T., Harper, G. and Hohn, T. (2003) Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J. 22, 4836–4845.

    Article  PubMed  Google Scholar 

  • Roda, H.R., Balakrishnan, M., Hanson, M.N., Wöhrl, B.M., Le Grice, S.F.J., Roques, B.P., Gorelick, R.J. and Bambara, R.A. (2003) Role of the reverse transcriptase, nucleocapsid protein, and template structure in the two-step transfer mechanism in retroviral recombination. J. Biol. Chem. 278, 31536–31546.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, S.A. and Pauls, K.P. (2000) Ty1-copia-like retrotransposons of tomato (Lycopersicon esculentum Mill.). Genome 43, 887–894.

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher, T. (2003) DNA, chromosomes and in situ hybridization. Genome 46, 953–962.

    Article  CAS  PubMed  Google Scholar 

  • Staginnus, C. and Richert-Pöggeler, K.R. (2006) Endogenous pararetroviruses: Two-faced travelers in the plant genome. Trends Plant Sci. 11, 485–491.

    Article  CAS  PubMed  Google Scholar 

  • Staginnus, C., Gregor, W., Mette, M.F., Teo, C.H., Borroto-Fernandez, E.G., Laimer da Camara Machado, M., Matzke, M. and Schwarzacher, T. (2007) Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species. BMC Plant Biol. 7, 24.

    Article  PubMed  Google Scholar 

  • Takeda, S., Sugimoto, K., Kakutani, T. and Hirochika, H. (2001) Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. Plant J. 28, 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Tam, S.M., Causse, M., Garchy, C., Burck, H., Mhiri, C. and Grandbastien, M.-A. (2007) The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J. Evol. Biol. 20, 1056–1072.

    Article  CAS  PubMed  Google Scholar 

  • Tatout, C., Lavie, L. and Deragon, J.-M. (1998) Similar target site selection occurs in integration of plant and mammalian retroposons. J. Mol. Ecol. 47, 463–470.

    Article  CAS  Google Scholar 

  • Vershinin, A.V., Druka, A., Alkhimova, A.G., Kleinhofs, A. and Heslop-Harrison, J.S. (2002) LINEs and gypsy-like retrotransposons in Hordeum species. Plant Mol. Biol. 49, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Vitte, C. and Panaud, O. (2005) LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenet. Genome Res. 110, 91–107.

    CAS  Google Scholar 

  • Vitte, C. and Bennetzen, J.L. (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci, USA 103, 17638–17643.

    Article  CAS  PubMed  Google Scholar 

  • Voytas, D.F., Cummings, M.P., Konieczny, A., Ausubel, F.M. and Rodermel, S.R. (1992) Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci., USA 89, 7124–7128.

    Article  CAS  PubMed  Google Scholar 

  • Voytas, D.F. and Boeke, J.D. (2002) Ty1 and Ty5 of Saccharomyces cerevisiae. In: N.L. Craig, R. Craigie, M. Gellert and A.M. Lambowitz (Eds.), Mobile DNA II. ASM Press, Washington, DC, pp. 631–662.

    Google Scholar 

  • Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J. and Tanksley, S.D. (2006) Euchromatin and pericentromeric heterochromatin: Comparative composition in the tomato genome. Genetics 172, 2529–2540.

    Article  CAS  PubMed  Google Scholar 

  • White, S.E., Habera, L.F. and Wessler, S.R. (1994) Retrotransposons in the flanking region of normal plant genes: Role for copia-like retroelements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci., USA 91, 11792–11796.

    Article  CAS  PubMed  Google Scholar 

  • Wright, D.A. and Voytas, D.F. (1998) Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149, 703–715.

    CAS  PubMed  Google Scholar 

  • Xiong, Y. and Eickbush, T.H. (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362.

    CAS  PubMed  Google Scholar 

  • Yang, T.J., Lee, J., Chang, S.B., Yu, Y., de Yong, H. and Wing, R.A. (2005) In-depth sequence analysis of the tomato chromosome 12 centromeric region: Identification of a large CAA block and characterization of pericentromere retrotransposons. Chromos. 114, 103–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja R. Richert-Pöggeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Richert-Pöggeler, K.R., Schwarzacher, T. (2009). Impact of Retroelements in Shaping the Petunia Genome. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_16

Download citation

Publish with us

Policies and ethics