Skip to main content

Functional Genomics of Forage and Bioenergy Quality Traits in the Grasses

  • Conference paper
Molecular Breeding of Forage and Turf

Abstract.

Biomass from forage and energy crops can provide a renewable source of meat, milk, and wool, or power, heat, transport fuels and platform chemicals, respectively. Whilst in forage grasses some improvements have been made, the potential of energy grasses is limited because plant varieties have not yet been selected for this purpose. There are distinct challenges to determine and improve quality traits which increase ultimate energy yield but experience from forage crops can help. Energy grasses offer the potential to be utilised through either thermal or biological conversion methods with the route chosen being largely determined by the calorific value, moisture content and the ratio of soluble to structural carbohydrates. Plant chemical composition underlies these characteristics, for example whichever way grass feedstocks are converted the major determinates of energy are lignin, cell wall phenolics and the soluble and cell wall carbohydrates. These components affect the efficiency of the energy conversion process to meat, milk, wool, energy, platform chemicals and the end quality of certain liquid fuels such as pyrolysis oils. To associate phenotype to genotype for such underlying chemical composition, it is necessary to develop both DNA based molecular markers and high throughput methods for compositional analysis. The genetic resources available in forage and energy grasses are limited in comparison with several model grasses including maize and for some traits it may be appropriate to work initially on such a model and then translate this research back to the forage or bioenergy crop. However not all traits will be present in the model, and so genetic and genomic resources are and will have to be developed in the crops themselves. As part of the EU project GRASP, SNP based markers have been developed in carbohydrate associated genes which map to soluble carbohydrate QTL in Lolium perenne (perennial ryegrass) and these have been used in association studies in a synthetic population of L. perenne to measure allele shifts. High throughput calibration models have been developed using near infrared reflectance spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIR) in the mid-infrared spectral range which allow accurate predictions of a number of composition traits including lignin, cellulose and hemicellulose contents in several forage and energy grasses including Miscanthus, L. perenne and related species. These calibrations have allowed a comparison of chemical composition from different grass genotypes, species and environments. Both tools and genetic resources for the optimisation of biomass as forage and energy feedstocks are therefore being developed to enable association of phenotype with genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstead , IPTurner LB, King IP, Cairns AJ, Humphreys MO (2002) Comparison and integration of genetic maps generated from F2. and BC1-type mapping populations in perennial ryegrass (Lolium perenne L.) Plant Breed 121: 501–507

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003a) Influencing combustion quality in Miscanthus sinensis. Anderss.: identification of QTLs for calcium, phosphorus and sulphur content Plant Breed 122: 141–145

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003b) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor Appl Genet 107: 857–863

    Article  CAS  Google Scholar 

  • Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgwater AV, Barraclough T, Shield I, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86: 60–72

    Article  CAS  Google Scholar 

  • Buanafina MMde O, Langdon T, Hauck BD, Dalton SJ, Morris P (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar targeted expression of a fungal ferulic acid esterase Appl Biochem Biotech 130: 415–426

    Article  Google Scholar 

  • Chen LM, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16: 385–392

    Article  PubMed  CAS  Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000) European Miscanthus improvement (FAIR3 CT- 96-1392). Final report, Chapter 9. Mapping the most suitable climatic zones for different Miscanthus genotypes in EuropeUniversity of Hohenheim, Germany

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DC, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe Agron J 93: 1013–1019

    Google Scholar 

  • Clifton-Brown JC, Stampfl P, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions Global Change Biol 10: 509–518

    Article  Google Scholar 

  • Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005) QTL analysis and comparative genomics of herbage traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110: 364–380

    Article  PubMed  CAS  Google Scholar 

  • Donnison IS, Gay AP, Thomas H, Edwards KJ, Edwards D, James CL, Thomas AM, Ougham HJ (2007) Modification of nitrogen remobilisation, grain fill and leaf senescence in maize (Zea mays L.). by transposon insertional mutagenesis in a protease gene New Phytol 173: 481–494

    Article  PubMed  CAS  Google Scholar 

  • Edwards D, Coghill J, Batley J, Holdsworth M, Edwards KJ (2002) Amplification and detection of transposon insertion flanking sequences using fluorescent MuAFLP. Biotechniques 32: 1090

    PubMed  CAS  Google Scholar 

  • Fahmi R, Bridgwater AV, Darvell LI, Jones JM, Yates N, Thain S, Donnison I (2007a) The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow Fuel 86: 1560–1569

    Article  CAS  Google Scholar 

  • Fahmi R, Bridgwater AV, Thain SC, Donnison IS, Morris PM, Yates N (2007b) Prediction of lignin and lignin thermal degradation products by py-gcms in a collection of Lolium and Festuca grasses J Anal Appl Pyrol 80: 16–23

    Article  CAS  Google Scholar 

  • Farrar K, Donnison IS (2007) Construction and screening of BAC libraries made from Brachypodium genomic DNA Nat Protocols 2: 1661–1674

    Article  CAS  Google Scholar 

  • Farrar K, Asp T, Lübberstedt T, Xu M, Thomas A, Christiansen C, Humphreys M, Donnison I (2007) Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed 19: 15–23

    Article  CAS  Google Scholar 

  • Frey M, Stettner C, Gierl A (1998) A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J 13: 717–721

    Article  CAS  Google Scholar 

  • Gallagher JA, Cairns AJ, Pollock CJ (2004) Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. J Exp Bot 55: 557–569

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Griffiths CM, Hosken SE, Oliver D, Chojecki J, Thomas H (1997) Sequencing, expression pattern and RFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain and aleurain. Plant Mol Biol 34: 815–821

    Article  PubMed  CAS  Google Scholar 

  • Hodgson EM, Clifton-Brown J, Lister S, Donnison I (2007) Development of a near-infrared reflectance spectroscopy calibration (NIRS) for the determination of cell wall composition of Miscanthus. Proceedings of the 15th European Biomass Conference and Exhibition, Berlin 7–11 May, 2007

    Google Scholar 

  • Jensen LB, Aarens P, Andersen CH, Holm PB, Ghesquiere M, Julier B, Lübberstedt T, Muylle H, Nielsen KK, de Riek J, Roldán-Ruiz I, Roulund N, Taylor C, Vosman B, Barre P (2005) Development and mapping of a public reference set of SSR markers in Lolium perenne L. Mol Eco Notes 5: 951–957

    Article  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45: 282–295

    Article  PubMed  CAS  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43: 195–203

    Article  CAS  Google Scholar 

  • King J, Armstead IP, Donnison IS, Thomas HM, Jones RN, Kearsey MJ, Roberts LA, Thomas A, Morgan WG, King IP (2002) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161: 315–324

    PubMed  CAS  Google Scholar 

  • Landau S, Glasser T, Dvash L (2006) Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: a review. Small Rumin Res 61: 1–11

    Article  Google Scholar 

  • Li Q, Bettany AJE, Donnison I, Griffiths CM, Thomas H, Scott IM (2000) Characterisation of a cysteine protease cDNA from Lolium multiflorum leaves and its expression during senescence and cytokinin treatment. Biochim Biophys Acta 1492: 233–236

    PubMed  CAS  Google Scholar 

  • Li Q, Robson PRH, Bettany AJE, Donnison IS, Thomas H, Scott IM (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22: 816–821

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Andreasen BS, Holm PB (2003) Development of ryegrass allele-specific (GRASP) markers for sustainable grassland improvement – a new framework V project. Czech J Genet Plant Breed 39: 125–128

    Google Scholar 

  • Mähnert P, Heiermann M, Linke B (2005) Batch- and semi-continuous biogas production from different grass species. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 05 010, vol. VII

    Google Scholar 

  • Marques G, Gutierrez A, del Rio JC (2007) Chemical characterization of lignin and lipophilic fractions from leaf fibers of curaua (Ananas erectifolius. ) J Agric Food Chem 55: 1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Belastegui-Macadam X, Quilleré I, Floriot M, Valadier M-H, Pommel B, Andrieu B, Donnison I, Hirel B (2005) Physiological and molecular characterization of the stay-green phenotype in a maize hybrid. New Phytol 167: 483–492

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Pérez N, Cherryman SJ, Premier GC, Dinsdale RM, Hawkes DL, Hawkes FR, Kyazze G (2007) The potential for hydrogen-enriched biogas production from crops: Scenarios in the UK. Biomass Bioenergy 31: 95–104

    Article  CAS  Google Scholar 

  • Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectrocopy. Plant J 35: 393–404

    Article  PubMed  CAS  Google Scholar 

  • Powlson DS, Riche AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol 146: 193–201

    Article  CAS  Google Scholar 

  • Robertson DS (1978) Characterization of a Mutator system in maize. Mutat Res 51: 21–28

    Google Scholar 

  • Robson PRH, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotech J 2: 101–112

    Article  CAS  Google Scholar 

  • Smart CM, Hosken SE, Thomas H, Greaves JA, Blair BG, Schuch W (1995) The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiol Plant 93: 673–682

    Article  CAS  Google Scholar 

  • Stewart D (1997) Application of Fourier-transform infrared and Raman spectroscopies to plant science. Rec Adv Food Agric Chem 1: 171–193

    Google Scholar 

  • Thomas H, Evans C, Thomas HM, Humphreys MW, Morgan G, Hauck B, Donnison IS (1997) Introgression, tagging and expression of a leaf senescence gene in FestuLolium. New Phytol 137: 29–34

    Article  Google Scholar 

  • Turner LB, Humphreys MO, Cairns AJ, Pollock CJ (2001) Comparison of growth and carbohydrate accumulation in seedlings of two varieties of Lolium perenne. J Plant Physiol 158: 891–897

    Article  CAS  Google Scholar 

  • Turner LB, Cairns AJ, Armstead IP, Ashton J, Skøt K, Whittaker D, Humphreys MO (2006) Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. New Phytol 169: 45–58

    Article  PubMed  CAS  Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. J Assoc Off Agric Chem 46: 829–835

    CAS  Google Scholar 

  • Van Soest PJ (1974) Composition and nutritive value of forages. In: Heath ME, Metcalfe DS, Barnes RF (eds) Forages 3rdIowa State University Press, Ames, IA,pp. 53–63edition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain S. Donnison .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this paper

Cite this paper

Donnison, I.S. et al. (2009). Functional Genomics of Forage and Bioenergy Quality Traits in the Grasses. In: Molecular Breeding of Forage and Turf. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79144-9_10

Download citation

Publish with us

Policies and ethics