Skip to main content

Optical Fiber Sensors Based on Nanostructured Coatings

  • Chapter
  • First Online:
Sensors Based on Nanostructured Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Culshaw B (2000). Fiber optics in sensing and measurement. IEEE J Sel Top Quant Electron, 6(6): 1014–1021.

    Article  CAS  Google Scholar 

  2. Dakin J, Culshaw B (1988, 1989, 1996, 1997). Optical Fiber Sensors. Vol I, II, III, and IV. Artech House Publishers, Massachusetts, USA.

    Google Scholar 

  3. Gusarov A, Fernandez Fernandez A, Vasiliev S, et al. (2002). Effect of gamma-neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms, 187(1): 79–86.

    Article  CAS  Google Scholar 

  4. Matias IR, Arregui FJ, Claus RO (2006). Optical Fiber Sensors. In: Grimes CA, Dickey EC, Pishko MV (eds), Encyclopedia of Sensors. American Scientific Publishers, New York, USA.

    Google Scholar 

  5. Bunganaen Y, Lamb DW (2005). An optical fibre technique for measuring optical absorption by chromophores in the presence of scattering particles. J Phys: Conf Ser, 15: 67–73.

    Article  CAS  Google Scholar 

  6. Davis F, Hodge P, Tredgold RH, et al. (2005). Langmuir–Blodgett films of preformed polymers containing biphenyl groups. Langmuir, 21(20): 9199–9205.

    Article  CAS  Google Scholar 

  7. Lvov Y, Ariga K, Ichinose Y, et al. (1995). Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. J Am Chem Soc, 117(22): 6117–6123.

    Article  CAS  Google Scholar 

  8. Ariga K, Lvov Y, Kunitake T (1997). Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J Am Chem Soc, 119: 2224–2231.

    Article  CAS  Google Scholar 

  9. Decher G (1997). Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 277: 1232–1237.

    Article  CAS  Google Scholar 

  10. Liu YJ, Wang AB, Claus RO (1997). Molecular self-assembly of TiO2/polymer nanocomposite films. J Phys Chem B, 101: 1385–1388.

    Article  CAS  Google Scholar 

  11. Lenahan KM, Wang AB, Liu YJ, Claus RO (1998). Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology. Adv Mater, 10(11): 853–855.

    Article  CAS  Google Scholar 

  12. Bertrand P, Jonas A, Laschewsky A, et al. (2000). Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun, 21: 319–348.

    Article  CAS  Google Scholar 

  13. Shiratori SS, Rubner MF (2000). pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 33(11): 4213–4219.

    Article  CAS  Google Scholar 

  14. Iler RK (1966). Multilayers of colloidal particles. J Colloid Interface Sci, 21: 569–594.

    Article  CAS  Google Scholar 

  15. Pastoriza-Santos I, Schöler B, Caruso F (2001). Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins. Adv Mat, 11(2): 122–128.

    CAS  Google Scholar 

  16. Schönhoff M (2003). Self-assembled polyelectrolyte multilayers. Curr Opin Colloid Interface Sci, 8(1): 86–95.

    Article  Google Scholar 

  17. Hammond PT (2004). Form and function in multilayer assembly: new applications at the nanoscale. Adv Mat, 16(15): 1271–1293.

    Article  CAS  Google Scholar 

  18. Arregui FJ, Matias IR, Liu Y, et al. (1999). Optical fiber nanometer-scale Fabry–Perot interferometer formed by the ionic self-assembly monolayer process. Opt Lett, 24: 596–598.

    Article  CAS  Google Scholar 

  19. Arregui FJ, Liu Y, Matias IR, et al. (1999). Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic selfassembly method. Sens Actuat B, 59(1): 54–59.

    Article  CAS  Google Scholar 

  20. Arregui FJ, Cooper KL, Liu Y, et al. (2000). Optical fiber humidity sensor with a fast response time using the ionic self-assembly method. IEICE Trans Electron, E83C: 360–365.

    Google Scholar 

  21. Goicoechea J, Arregui FJ, Corres J, et al. (2008). Study and optimization of self-assembled polymeric multilayer structures with neutral red for pH sensing applications. J Sens, Article ID 142854, 7 pages, doi: 10.1155/2008/142854.

    Google Scholar 

  22. Lee CE, Gibler WN, Atkins RA, et al. (1992). In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors. IEEE J Lightwave Technol, 10: 1376–1379.

    Article  Google Scholar 

  23. Del Villar I, Matías IR, Arregui FJ, et al. (2005). Fiber-optic hydrogen peroxide nanosensor. IEEE Sensors J, 5(3): 365–371.

    Article  CAS  Google Scholar 

  24. Arregui FJ, Matias IR, Cooper KL, et al. (2001). Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process. Opt Lett, 26: 131–133.

    Article  CAS  Google Scholar 

  25. Arregui FJ, Claus RO, Cooper KL, et al. (2001). Optical fiber gas sensor based on self-assembled gratings. J Lightwave Technol, 19(12): 1932–1937.

    Article  CAS  Google Scholar 

  26. García-Moreda FJ, Arregui FJ, Achaerandio M, et al. (2006). Study of indicators for the development of fluorescence based optical fiber temperature sensors. Sens Actuat B, 118(1–2): 425–432.

    Article  Google Scholar 

  27. Zamarreño CR, Bravo J, Goicoechea J, et al. (2007). Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings. Sens Actuat B, 128(1): 138–144.

    Article  Google Scholar 

  28. Goicoechea J, Zamarreño CR, Matias IR, et al. (2007). Minimizing the photobleaching of self-assembled multilayers for sensor applications. Sens Actuat B, 126(1): 41–47.

    Article  CAS  Google Scholar 

  29. Lacroix S, Black R, Veilleux C, et al. (1986). Tapered single-mode fibers: external refractive index dependence. Appl Opt, 25(15): 2468–2469.

    Article  CAS  Google Scholar 

  30. Love JD, Henry WM, Stewart WJ, et al. (1991). Tapered single-mode fibers and devices (part 1). Adiabatic criteria. IEE Proc J, 138(5): 343–353.

    Google Scholar 

  31. Black RJ, Bourbonnais R (1986). Core-mode cutoff for finite-cladding lightguides, IEE Proc J, 133(6): 277–384.

    Google Scholar 

  32. Shankar PM, Lloyd C, Bobb HD, et al. (1991). Coupling of modes in bent biconically tapered single-mode fibers. J Lightwave Technol, 9: 832–837.

    Article  CAS  Google Scholar 

  33. Corres JM, Arregui FJ, Matias IR (2006). Design of humidity sensors based on tapered optical fibers. J Lightwave Technol, 24: 4329–4336.

    Article  Google Scholar 

  34. Corres JM, Arregui FJ, Matías IR (2007). Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens Actuat B, 122(2): 442–449.

    Article  CAS  Google Scholar 

  35. Matias IR, Arregui FJ, Corres, et al. (2007). Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings. IEEE Sens J, 7(1): 89–95.

    Article  Google Scholar 

  36. James SW, Tatam RP (2003). Optical fibre long-period grating sensors: characteristics and application. Meas Sci Technol, 14(5): R49.

    Article  CAS  Google Scholar 

  37. Ng MN, Chiang KS (2002). Thermal effects on the transmission spectra of long-period fiber gratings. Opt Commun, 208(4–6): 321–327.

    Article  CAS  Google Scholar 

  38. Chen X, Zhou K, Zhang L, et al. (2004). Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching. IEEE Photon Technol Lett, 16(5): 1352–1354.

    Article  CAS  Google Scholar 

  39. Allsop T, Dubov M, Martinez A, et al. (2005). Long period grating directional bend sensor based on asymmetric index modification of cladding. Electron Lett, 41(2): 59–60.

    Article  Google Scholar 

  40. Zhang L, Liu Y, Everall L, et al. (1999). Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors. IEEE J Sel Top Quant Electron, 5(5): 1373–1378.

    Article  CAS  Google Scholar 

  41. James SW, Tatam RP (2006). Fibre optic sensors with nano-structured coatings. J Opt A, Pure Appl Opt, 8(7): S430–S444.

    Article  CAS  Google Scholar 

  42. Del Villar I, Corres JM, Achaerandio M, et al. (2006). Spectral evolution with incremental nanocoating of long period fiber gratings. Opt Express, 14: 11972–11981.

    Article  Google Scholar 

  43. Del Villar I, Matias IR, Arregui FJ (2006). Influence on cladding mode distribution of overlay deposition on long-period fiber gratings. J Opt Soc Am A, 23: 651–658.

    Article  Google Scholar 

  44. James SW, Cheung CS, Tatam RP (2007). Experimental observations on the response of 1st and 2nd order fibre optic long period grating coupling bands to the deposition of nanostructured coatings. Opt Express, 15(20): 13096–13107.

    Article  Google Scholar 

  45. Del Villar I, Matias IR, Arregui FJ (2005). Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials. Opt Lett, 30: 2363–2365.

    Article  CAS  Google Scholar 

  46. Del Villar I, Matías IR, Arregui FJ, et al. (2005). optimization of sensitivity in long period fiber gratings with overlay deposition. Opt Express, 13: 56–69.

    Article  Google Scholar 

  47. James SW, Ishaq I, Ashwell GJ, et al. (2005). Cascaded long-period gratings with nanostructured coatings. Opt Lett, 30(17): 2197–2199.

    Article  CAS  Google Scholar 

  48. Del Villar I, Arregui FJ, Matias IR, et al. (2007). Fringe generation with non-uniformly coated long-period fiber gratings. Opt Express, 15: 9326–9340.

    Article  Google Scholar 

  49. Bravo J, Matias IR, Del Villar I, et al. (2006). Nanofilms on hollow core fiber-based structures: an optical study. J Lightwave Technol, 24: 2100–2107.

    Article  Google Scholar 

  50. Sirkis J, Berkoff TA, Jones RT, et al. (1995). In-line fiber etalon (ILFE) fiber-optic strain sensors. J Lightwave Technol, 13: 1256–1263.

    Article  Google Scholar 

  51. Kang Y, Ruan H, Wang Y, et al. (2006). Nanostructured optical fibre sensors for breathing airflow monitoring. Meas Sci Technol, 17(5): 1207–1210.

    Article  CAS  Google Scholar 

  52. Arregui FJ, Matías IR, Cooper KL, et al. (2002). Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating. IEEE Sens J, 2(5): 482–487.

    Article  Google Scholar 

  53. de Bastida G, Arregui FJ, Goicoechea J, et al. (2006). Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sens J, 6(6): 1378–1379.

    Article  Google Scholar 

  54. Bravo J, Goicoechea J, Corres JM, et al. (2007). Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique. Proc SPIE. doi: 10.1117/12.738388.

    Google Scholar 

  55. Arregui FJ, Matias IR, Claus RO (2003). Optical fiber gas sensors based on hydrophobic alumina thin films formed by the electrostatic self-assembly monolayer process. IEEE Sens J, 3(1): 56–61.

    Article  CAS  Google Scholar 

  56. Elosua C, Bariain C, Matıas IR, et al. (2006). Volatile alcoholic compounds fibre optic nanosensor. Sens Actuat B, 115: 444–449.

    Article  CAS  Google Scholar 

  57. Grant PS, McShane MJ (2003). Development of multilayer fluorescent thin film chemical sensors using electrostatic self-assembly. IEEE Sens J, 3(2): 139–146.

    Article  CAS  Google Scholar 

  58. Arregui FJ, Latasa I, Matias IR (2003). An optical fiber pH sensor based on the electrostatic self-assembly method. Sens Proc IEEE, 1(22–24): 107–110.

    Google Scholar 

  59. Goicoechea J, Arregui FJ, Matias IR (2007). Optical fiber pH sensors based on self-assembled multilayered neutral red. Proc SPIE. doi: 10.1117/12.738427.

    Google Scholar 

  60. Goicoechea J, Zamarreño CR, Matias IR, et al. (2008). Optical fiber pH sensors based on layer-by-layer electrostatic self-assembly. Sens Actuat B, 132(1): 305–311.

    Google Scholar 

  61. Corres JM, Del Villar I, Matias IR, et al. (2007). Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. Opt Lett, 32: 29–31.

    Article  Google Scholar 

  62. Keith J, Hess LC, Spendel WU, et al. (2006). The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption. Talanta, 70: 818–822.

    Article  CAS  Google Scholar 

  63. Del Villar I, Matías IR, Arregui FJ, et al. (2005). ESA-based in-fiber nanocavity for hydrogen–peroxide detection. IEEE Trans Nanotechnol, 4(2): 187–193.

    Article  Google Scholar 

  64. Wang X, Cooper KL, Wang A, et al. (2006). Label-free DNA sequence detection using oligonucleotide functionalized optical fiber. Appl Phys Lett, 89: 163901.1–163901.3.

    Google Scholar 

  65. Zhang Y, Shibru H, Cooper KL, et al. (2005). Miniature fiber-optic multicavity Fabry–Perot interferometric biosensor. Opt Lett, 30: 1021–1023.

    Article  CAS  Google Scholar 

  66. Zhang Y, Chen X, Wang Y, et al. (2007). Microgap multicavity Fabry–Perot biosensor. J Lightwave Technol, 25(7): 1797–1814.

    Article  Google Scholar 

  67. Kaul S, Chinnayelka S, McShane MJ (2004). Self-assembly of polymer/nanoparticle films for fabrication of fiber-optic sensors based on SPR. In: Gannot I (ed) Optical Fibers and Sensors for Medical Applications IV. SPIE, Bellingham, WA.

    Google Scholar 

  68. Kuila D, Tien M, Lvov Y et al. (2004). Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation and biosensing. In: Islam MS, Dutta AK (eds) Nanosensing: Materials and Devices. SPIE, Bellingham, WA.

    Google Scholar 

  69. Corres JM, Bravo J, Matias IR, et al. (2007). Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. IEEE Sens, 28–31: 608–611.

    Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Spanish Ministry of Education and Science-FEDER TEC2006-12170/MIC Research Grant and Government of Navarre-FEDER Euroinnova Research Grants.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arregui, F.J., Matias, I.R., Goicoechea, J., Villar, I.D. (2009). Optical Fiber Sensors Based on Nanostructured Coatings. In: Arregui, F. (eds) Sensors Based on Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77753-5_9

Download citation

Publish with us

Policies and ethics