Skip to main content

Nanotechnology for Cancer Chemotherapy

  • Chapter
Nanotechnology in Drug Delivery

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

Abstract

This chapter will provide an in-depth discussion on the development of nanometer-sized carriers for the treatment of cancer. Anti-cancer drugs given systemically remain problematic due to their non-specificity. These cytotoxic drugs destroy both cancerous and normal cells of the body, thus leading to potentially fatal side effects. In recent developments, new cytotoxic drugs have yielded compounds with poor physiochemical properties which require alternate routes in their delivery to the diseased tissue. The use of nanoparticles for the delivery of chemotherapeutics to cancer lesions and their microenvironment has offered solutions to the problems associated with conventional administration, delivery, and formulation of chemotherapeutics. Nanoparticles, submicron-sized colloidal structures, have shown to extravasate across tumor vascular walls, penetrate into the tumor interstitium, target surface receptors on cancer cells, and control the release of the anti-cancer drug locally. The design in the surface of the colloidal carrier is important in achieving a biocompatible, long circulating, and targeted drug delivery particulate system. The rational approach in engineering colloidal carriers with the potential to treat cancer is discussed and examples of drug delivery systems which have demonstrated therapeutic efficacy are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, T. M. (2002). Ligand-Targeted Therapeutics in Anticancer Therapy. Nature, 2, 750–763.

    CAS  Google Scholar 

  • Aplin, A. E., Howe, A., Alahari, S. K., and Juliano, R. L. (1998). Signal Transduction and Signal Modulation by Cell Adhesion Receptors: The Role of Integrins, Cadherins, Immunoglobulin-Cell Adhesion Molecules, and Selectins. Phamacological Reviews, 50(2), 199–252.

    Google Scholar 

  • Bailon, P. B., W. (1998). Polyethylene glycol-conjugated pharmaceutical proteins. Pharmaceutical Science and Technology Today, 1(8), 352–356.

    CAS  Google Scholar 

  • Birnbaum, D. T., and Brannon-Peppas, L. Microparticle Drug Delivery Systems. In D. M. Brown (Ed.), Drug Delivery Systems in Cancer Therapy. Totowa: Humana Press Inc.

    Google Scholar 

  • Brannon-Peppas, L., and Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56, 1649–1659.

    CAS  PubMed  Google Scholar 

  • Brigger, I., Morizet, J., Aubert, G., Chacun, H., Terrier-Lacombe, M.-J., Couvreur, P., and Vassal, G. (2002). Poly(ethylene glycol)-Coated Hexadecylcyanoacrylate Nanospheres Display a Combined Effect for Brain Tumor Targeting. The Journal of Pharmacology and Experimental Therapeutics, 303(3), 928–936.

    CAS  PubMed  Google Scholar 

  • Champion, J. A., and Mitragotri, S. A. (2006). Role of target geometry in phagocytosis. PNAS, 103(13), 4030–4033.

    Google Scholar 

  • Daldrup, H., Shames, D. M., Wendland, M., Okuhata, Y., Link, T. M., Rosenan, W., Lu, Y., and Brasch, R. C. (1998). Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Pediatric Radiology, 28, 67–78.

    CAS  PubMed  Google Scholar 

  • de Jaeghere, F., Doelker, E., and Gurny, R. (1999). Nanoparticles. In E. Mathiowitz (Ed.), Encyclopedia of Controlled Drug Delivery (Vol. 2, pp. 641–664). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Desgouilles, S., Vauthier, C., Bazile, D., Vacus, J., Grossiord, J.-L., Veillard, M., and Couvreur, P. (2003). The Design of Nanoparticles Obtained by Solvent Evaporation: A Comprehensive Study. Langmuir, 19, 9504–9510.

    CAS  Google Scholar 

  • di Tomaso, E., Capen, D., Haskell, A., Hart, J., Logie, J. J., Jain, R. K., McDonald, D. M., Jones, R., and Munn, L. L. (2005). Mosaic Tumor Vessels: Cellular Basis and Ultrastructure of Focal Regions Lacking Endothelial Cell Markers. Cancer Research, 65(13), 5740–5749.

    PubMed  Google Scholar 

  • Dreher, M. R., Liu, W., Michelich, C. R., Dewhirst, M. W., Yuan, F., and Chilkoti, A. (2006). Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers. Journal of the National Cancer Institute, 98(5), 335–344.

    CAS  PubMed  Google Scholar 

  • Dua, R. S., Gui, G. P. H., and Isacke, C. M. (2005). Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems. Journal of Cancer Surgery, 31, 824–832.

    CAS  Google Scholar 

  • Duncan, R. (2003). The Drawing Era of Polymer Therapeutics. Nature Reviews, 2, 247–359.

    Google Scholar 

  • Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature 6, 688–701.

    CAS  Google Scholar 

  • Esfand, R., and Tomalia, D. A. (2001). Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 6(8), 427–436.

    CAS  PubMed  Google Scholar 

  • Faraasen, S., Voros, J., Csucs, G., Textor, M., Merkle, H. P., and Walter, E. (2003). Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharmaceutical Research, 20(2), 237–246.

    CAS  PubMed  Google Scholar 

  • Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P., and Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS, 103(16), 6315–6320.

    CAS  PubMed  Google Scholar 

  • Feng, S.-S., and Chien, S. (2003). Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chemical Engineering Science, 58, 4087–4114.

    CAS  Google Scholar 

  • Fernandez-Urrusuno, R., Fattal, E., Porquet, D., Feger, J., and Couvreur, P. (1995). Influence of Surface Properties on the Inflammatory Response to Polymeric Nanoparticles. Pharmaceutical Research, 12(9), 1995.

    Google Scholar 

  • Ferrari, M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nature Reviews, 5, 161–172.

    CAS  PubMed  Google Scholar 

  • Gao, Z., Fain, H. D., and Rapoport, N. (2004). Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Molecular Pharmaceutics, 1(4), 317–330.

    CAS  PubMed  Google Scholar 

  • Gao, Z., Lukyanov, A. N., Singhal, A., and Torchilin, V. P. (2002). Diacyllipid-Polymer Micelles as Nanocarriers for Poorly Soluble Anticancer Drugs. Nano Letters, 2(9), 979–982.

    CAS  Google Scholar 

  • Gbadamosi, J. K., Hunter, A. C., and Moghimi, S. M. (2002). PEGylation of microspheres generates a heterogenous population of particles with different surface characteristics and biological performances. FEBS Letters, 532, 338–344.

    CAS  PubMed  Google Scholar 

  • Gong, X., Dai, L., Griesser, H. J., and Mau, A. W. H. (2000). Surface Immobilization of Poly(ethylene oxide) Structure and Properties. Journal of Polymer Science: Part B: Polymer Physics, 38, 2323–2332.

    CAS  Google Scholar 

  • Gref, R., Couvreur, P., Barratt, G., and Mysiakine, E. (2003). Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials, 24, 4529–4537.

    CAS  PubMed  Google Scholar 

  • Gringauz, A. (1997). How Drugs Act and Why. New York: Wiley-VCH.

    Google Scholar 

  • Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S., and Allen, T. M. (1995). Attachment of antibodies to sterically stabilized liposomes: Evaluation, comparison and optimization of coupling procedures. Biochimica et Biophysica Acta, 1239, 133–144.

    PubMed  Google Scholar 

  • Harrington, K. J., Rowlinson-Busza, G., Syrigos, K. N., Uster, P. S., Vile, R. G., and Stewart, J. S. W. (2000). Pegylated Liposomes Have the Potential as Vehicles for Intratumoral and Subcutaneous Drug Delivery Clinical Cancer Research, 6, 2528–2537.

    CAS  PubMed  Google Scholar 

  • Heldin, C.-H., Rubin, K., Pietras, K., and Ostman, A. (2004). High Interstitial Fluid Pressure- An Obstacle in Cancer Therapy. Nature Reviews: Cancer, 4, 806–813.

    CAS  PubMed  Google Scholar 

  • Herbst, R. S. (2004). Review of Epidermal Growth Factor Receptor Biology. International Journal of. Radiation Oncology, Biology, Physics, 59(2), 21–26.

    CAS  PubMed  Google Scholar 

  • Hirsch, L. R., Halas, N. J., and West, J. L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceeding of the National Academy of Sciences of the United States of America., 100, 13549–13554.

    Google Scholar 

  • Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment Proceeding of the National Academy of Sciences of the United States of America, 95, 4607–4612.

    Google Scholar 

  • Jaffer, F. A., and Weissleder, R. (2004). Seeing within: Molecular Imaging of the Cardiovascular System. Circulation Research, 94, 433–445.

    CAS  PubMed  Google Scholar 

  • Jain, R. K. (2001). Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 46, 149–168.

    CAS  PubMed  Google Scholar 

  • Jamil, H., Shiekh, S., and Ahmad, I. (2004). Liposomes: The Next Generation. Modern Drug Discovery, 37–39.

    Google Scholar 

  • Jang, S. H., Wientjes, M. G., Lu, D., and Au, J. L.-S. (2003). Drug Delivery and Transport to Solid Tumors Pharmaceutical Research, 20(9), 1337–1350.

    CAS  PubMed  Google Scholar 

  • Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J., and Thun, M. J. (2005). Cancer Statistics, 2005. CA: A Cancer Journal for Clinicians, 55(1), 10–30.

    Google Scholar 

  • Kim, C. K., and Lim, S. J. (2002). Recent progress in drug delivery systems for anticancer agents. Archives of Pharmacal Research, 25, 229–239.

    CAS  PubMed  Google Scholar 

  • Kingsley, J. D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H. E., and Destache, C. J. (2006). Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. Journal of Neuroimmunology and. Pharmacology, 1, 340–350.

    Google Scholar 

  • Kipp, J. E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International Journal of Pharmaceutics, 284(284), 109–122.

    CAS  PubMed  Google Scholar 

  • Kirpotin, D., Park, J. W., Hong, K., Zalipsky, S., Li, W., Carter, P., Benz, C. C., and Papahadjopoulous, D. (1997). Sterically stabilized Anti-HER2 Immunoliposomes: Design and Targeting to Human Breast Cancer cells in vitro. Biochemistry, 36, 66–75.

    CAS  PubMed  Google Scholar 

  • Langer, R. (2000). Biomaterials in Drug Delivery and Tissue Engineering: One Laboratory's Experience. Accounts of Chemical Research, 33, 94–101.

    CAS  PubMed  Google Scholar 

  • Lasic, D. D., Vallner, J. J., and Working, P. K. (1999). Sterically stabilized liposomes in cancer therapy and gene delivery. Current Opinion in Molecular Therapeutics, 1(2), 177–185.

    CAS  PubMed  Google Scholar 

  • LaVan, D. A., McGuire, T., and Langer, R. (2003). Small-scale systems for in vivo drug delivery Nature Biotechnology, 21, 1184–1191.

    CAS  PubMed  Google Scholar 

  • Leach, K. J. (1999). Cancer, Drug Delivery to Treat Local and Systemic (Vol. 1). New York: John Wiley & Sons Inc.

    Google Scholar 

  • Leamon, C. P., Cooper, S. R., and Hardee, G. E. (2003). Folate-Liposome-Mediated Antisense Oligodeoxynucleotide Targeting to Cancer Cells: Evaluation in Vitro and in Vivo. Bioconjugate Chemistry, 14, 738–747.

    CAS  PubMed  Google Scholar 

  • Lee, R. J., and Low, P. S. (1994). Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis. The Journal of Biological Chemistry, 269, 3198–3204.

    CAS  PubMed  Google Scholar 

  • Lewanski, C. R., and Stewart, S. (1999). Pegylated liposomal adriamycin: a review of current and future applications. Pharmaceutical Science and Technology Today, 2(12), 473–477.

    CAS  PubMed  Google Scholar 

  • Liu, H., Farrell, S., and Uhrich, K. (2000). Drug release characteristics of unimolecular polymeric micelles. Journal of Controlled Release, 68, 167–174.

    CAS  PubMed  Google Scholar 

  • Liu, H., Farrell, S., and Uhrich, K. (2000). Drug release characteristics of unimolecular polymeric micelles. Journal of Controlled Release, 68(2), 167–174.

    CAS  PubMed  Google Scholar 

  • Liu, X., Gao, C., Shen, J., and Mohwald, H. (2005). Multilayer Microcapsules as Anti-Cancer Drug Delivery Vehicle: Deposition, Sustained Release and in vitro Bioactivity. Macromolecular Bioscience, 5, 1209–1219.

    CAS  PubMed  Google Scholar 

  • Loeb, K. R., and Loeb, L. A. (2000). Significance of multiple mutations in cancer. Genes Chromosomes Cancer, 38, 302–306.

    Google Scholar 

  • Loeb, L. A. (1991). Mutator phenotype may be required for multistage carcinogenesis. Cancer Research, 51, 3075–3079.

    CAS  PubMed  Google Scholar 

  • Lu, Z., Prouty, M. D., Guo, Z., Golub, V. O., Kumar, C. S. S. R., and Lvov, Y. M. (2005). Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Aug Nanoparticles. Langmuir, 21, 2042–2050.

    CAS  PubMed  Google Scholar 

  • Luck, M., Paulke, B. R., Schroder, W., Blunk, T., and Muller, R. H. (1998). Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research, 39, 478–485.

    CAS  PubMed  Google Scholar 

  • Luo, Y., and Prestwich, G. D. (2002). Cancer-targeted polymeric drugs. Current Cancer Drug Targets, 2(3), 209–226.

    CAS  PubMed  Google Scholar 

  • Maeda, H., Fang, J., Inutsuka, T., and Kitamoto, Y. (2003). Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. International Immunopharmocology, 3, 319–328.

    CAS  Google Scholar 

  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 65, 271–284.

    CAS  PubMed  Google Scholar 

  • Marshall, A. (2006). Transmission Electron Microscope (TEM) Facility.

    Google Scholar 

  • May, D. J., Allen, J. S., and Ferrara, K. W. (2002). Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans., 49, 1400–1410.

    Google Scholar 

  • Merlo, L. M. F., Pepper, J. W., Reid, B. J., and Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews: Cancer, advanced online publication, 1–12.

    Google Scholar 

  • Minchinton, A. I., and Tannock, I. F. (2006). Drug penetration in solid tumors. Nature Reviews, 6, 583–592.

    CAS  PubMed  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., and Murray, J. C. (2005). Nanomedicine: current status and future prospects. FASEB J., 19, 311–330.

    CAS  PubMed  Google Scholar 

  • Moghimi, S. M., and Szebeni, J. (2003). Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization, and protein-binding properties. Progress in Lipid Research, 42, 463–478.

    CAS  PubMed  Google Scholar 

  • Moses, M. A., Brem, H., and Langer, R. (2003). Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell, 4, 337–340.

    CAS  PubMed  Google Scholar 

  • Mosqueira, V. C. F., Legrand, P., Gref, R., Heuratault, B., Appel, M., and Barratt, G. (1999). Interactions between a Macrophage Cell line (J774A1) and surface-modified Poly(D,L-lactide) Nanocapsules Bearing Poly(ethylene glycol). Journal of Drug Targeting, 7(1), 65–78.

    CAS  PubMed  Google Scholar 

  • Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D. (1992). Handbook of X-ray Photoelectron Spectroscopy. Eden Praire, MN: Perken-Elmer Corp.

    Google Scholar 

  • Muller, R. H., Mader, K., and Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50, 161–177.

    CAS  PubMed  Google Scholar 

  • Napper, D. H. (1983). Polymeric Stabilization of Colloidal Dispersion. London: Academic Press.

    Google Scholar 

  • Neri, D., and Bicknell, R. (2005). Tumor Vascular Targeting. Nature Reviews, 5, 436–447.

    CAS  PubMed  Google Scholar 

  • Nobs, L., Buchegger, F., Gurny, R., and Allemann, E. (2004). Current methods for attaching ligands to liposomes and nanoparticles. Journal of Pharmaceutical Sciences, 93, 1980–1992.

    CAS  PubMed  Google Scholar 

  • Norde, W. (1996). Driving Forces for Protein Adsorption at Solid Surfaces. Macromol. Symp., 103, 5–18.

    CAS  Google Scholar 

  • O'Donnell, P. B., and McGinity, J. W. (1997). Preparation of microspheres by the solvent evaporation technique. Advanced Drug Delivery Reviews, 28, 25–42.

    PubMed  Google Scholar 

  • Oliver, M., Ahmad, A., Kamaly, N., Perouzel, E., Caussin, A., Keller, M., Herlihy, A., Bell, J., Miller, A. D., and Jorgensen, M. R. (2006). MAGfect: a novel liposome formulation for MRI labelling and visualization of cells. Organic & Biomolecular Chemistry, 4(18), 3489–3497.

    CAS  Google Scholar 

  • Pante, N., and Kann, M. (2002). Nuclear Pore Complex is Able to Transport Macromolecules with Diameters ˜ 39 nm. Molecular Biology of the Cell, 13, 425–434.

    CAS  PubMed  Google Scholar 

  • Papisov, M. I. (1998). Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions. Advanced Drug Delivery Reviews, 32, 119–138.

    CAS  PubMed  Google Scholar 

  • Park, S. Y., Barrett, C. J., Rubner, M. F., and Mayes, A. M. (2001). Anomalous Adsorption of Polyelectrolyte Layers. Macromolecules, 34, 3384–3388.

    CAS  Google Scholar 

  • Peracchia, M. T. (1997). PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics. Journal of Controlled Release, 46, 223–231.

    CAS  Google Scholar 

  • Perez, J. M., Josephson, L., and Weissleder, R. (2004). Use of magnetic nanoparticles to probe for molecular interactions. ChemBioChem., 5, 261–264.

    CAS  PubMed  Google Scholar 

  • Quintana, A., Raczka, E., Piehler, L., Lee, I., Mye, A., Majoros, I., Patri, A. K., Thomas, T., Mule, J., and Baker, J. R. (2002). Design and Function of a Dendrimer-Based Therapeutic Nanodeviced Targeted to Tumor Cells Through the Folate Receptor. Pharmaceutical Research, 19(9), 1310–1316.

    CAS  PubMed  Google Scholar 

  • Ratner, B. D., Johnston, A. B., and Lenk, T. J. (1987). Biomaterial Surfaces. Journal of Biomedical Materials Research: Applied Biomaterials, 21(A1), 59–90.

    CAS  PubMed  Google Scholar 

  • Reddy, G. R., Bhojani, M. S., McConville, P., Moody, J., Moffat, B. A., Hall, D. E., Kim, G., Koo, Y.-E. L., Woolliscroft, M. J., Sugai, J. V., Johnson, T., D., Philbert, M. A., Kopelman, R., Rehemtulla, A., and Ross, B. D. (2006). Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors. Clin 12(22), 6677–6686.

    CAS  Google Scholar 

  • Roy, L., Ohulchanskyy, T. Y., Pudavar, H. E., Bergey, E. J., Oseroff, A. R., Morgan, J., Dougherty, T. J., and Parasad, P. N. (2003). Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 125, 7860–7865.

    CAS  PubMed  Google Scholar 

  • Ruan, G., Feng, S.-S., and Li, Q.-T. (2002). Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. Journal of Controlled Release, 84, 151–160.

    CAS  PubMed  Google Scholar 

  • Sahoo, S. K., and Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8, 1112–1120.

    CAS  PubMed  Google Scholar 

  • Saltzman, W. M. (2001). Controlled Drug Delivery Systems (Vol. 1). Oxford: Oxford University Press, Inc.

    Google Scholar 

  • Sanjeeb K. Sahoo, V. L. (2003). Nanotech approaches to drug delivery and imaging. DDT, 8(24), 1112–1120.

    Google Scholar 

  • Santander-Ortega, M. J., Jodar-Reyes, A. B., Csaba, N., Bastos-Gonzalez, D., and Ortega-Vinuesa, J. L. (2006). Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilization mechanisms. Journal of Colloid and Interface Science, 302, 522–529.

    CAS  PubMed  Google Scholar 

  • Saul, J. M., Annapragada, A. V., and Bellamkonda, R. V. (2006). A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. Journal of Controlled Release, 114, 277–287.

    CAS  PubMed  Google Scholar 

  • Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, S., and Torchilin, V. P. (2006). “SMART” Drug Delivery systems: Double-Targeted pH-Responsive Pharmaceutical Nanocarriers. Bioconjugate Chemistry, 17, 943–949.

    CAS  PubMed  Google Scholar 

  • Scherphof, G. L., and Kamps, J. A. A. M. (1998). Receptor versus non-receptor mediated clearance of liposomes. Advanced Drug Delivery Reviews, 32, 81–97.

    CAS  PubMed  Google Scholar 

  • Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., and Sasisekharan, R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436, 568–572.

    CAS  PubMed  Google Scholar 

  • Sheff, D. (2004). Endosomes as a route for drug delivery in the real world. Advanced Drug Delivery Reviews, 56, 927–930.

    CAS  PubMed  Google Scholar 

  • Sparreboom, A., Baker, S. D., and Verweij, J. (2005). Paclitaxel Repackaged in an Albumin-Stabilized Nanoparticle: Handy or Just a Dandy? Journal of Clinical Oncology, 23(31), 7765–7767.

    CAS  PubMed  Google Scholar 

  • Stolnik, S., Daudali, B., Arien, A., Whetstone, J., Heald, C. R., Garnett, M. C., Davis, S. S., and Illum, L. (2001). The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica et Biophysica Acta, 1514(2), 261–279.

    CAS  PubMed  Google Scholar 

  • Stolnik, S., Illum, L., and Davis, S. S. (1995). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.

    CAS  Google Scholar 

  • Stolnik, S. I., L. Davis, S.S. (1995a). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.

    CAS  Google Scholar 

  • Stolnik, S. I., L. Davis, S.S. (1995b). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.

    CAS  Google Scholar 

  • Storm, G., Belliot, S. H., Daemen, T., and Lasic, D. D. (1995a). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.

    CAS  Google Scholar 

  • Storm, G., Belliot, S. H., Daemen, T., and Lasic, D. D. (1995b). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.

    CAS  Google Scholar 

  • Sudimack, J., and Lee, R. J. (2000). Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews, 41, 147–162.

    CAS  PubMed  Google Scholar 

  • Sukhishvili, S. A. (2005). Responsive polymer films and capsules via layer-by-layer assembly. Current Opinion in Colloid & Interface Science, 10, 37–44.

    CAS  Google Scholar 

  • Sunderland, C. J., Steiert, M., Talmadge, J. E., Derfus, A. M., and Barry, S. E. (2006). Targeted nanoparticles for detecting and treating cancer. Drug Development Research, 67(1), 70–93.

    CAS  Google Scholar 

  • Thote, A. J., Chappell, J. T., Gupta, R. B., and Kumar, R. (2005). Drug Development and Industrial Pharmacy 31(1), 43–57.

    CAS  PubMed  Google Scholar 

  • Tomalia, D. A., and Frechet, J. M. J. (2002). Discovery of dendrimers and dendritic polymers: a brief historical perspective. Journal of Polymer Sciences Part A: PolymerChemistry., 40, 2719–2728.

    CAS  Google Scholar 

  • Torchilin, V. P. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences, 61, 2549–2559.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (2006). Recent Approaches to Intracellular Delivery of Drugs and DNA and Organelle Targeting. Annual Review in Biomedical Engineering, 8, 343–375.

    CAS  Google Scholar 

  • Tripp, B. C., Magda, J. J., and Andrade, J. D. (1995). Journal of Colloid and Interface Science, 173, 16–27.

    CAS  Google Scholar 

  • Unger, E. C., Porter, T., Culp, W., Labell, R., Matsunaga, T., and Zutshi, R. (2004). Therapeutic applications of lipid-coated microbubbles. Advanced Drug Delivery Reviews, 56, 1291–1314.

    CAS  PubMed  Google Scholar 

  • Vandervoort, J., and Ludwig, A. (2002). Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. International Journal of Pharmaceutics, 238(1–2), 77–92.

    CAS  PubMed  Google Scholar 

  • Vasir, J. K., and Labhasetwar, V. (2005). Targeted Drug Delivery in Cancer Therapy. Technology in Cancer Research & Treatment, 4(4), 363–374.

    CAS  Google Scholar 

  • Wang, L., Bao, J., Wang, L., Zhang, F., and Li, Y.-P. (2005). One-pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres. European Journal of Medicinal Chemistry, 12, 6341–6347.

    Google Scholar 

  • Watson, P., Jones, A. T., and Stephens, D. J. (2005). Intracellular trafficking pathways and drug delivery: fluorescence imaging of living cells and fixed cells. Advanced Drug Delivery Reviews, 57, 43–61.

    CAS  PubMed  Google Scholar 

  • Waugh, W. N., Trissel, L. A., and Stella, V. J. (1991). Stability, compatibility, and plasticizer extraction of taxol injection diluted in infusion solutions and stored in various containers. American. Journal of Hospital Pharmacist, 48, 1520–1524.

    CAS  Google Scholar 

  • Weissleder, R. (2002). Scaling down Imaging: Molecular Mapping of Cancer in Mice. Nature Reviews Cancer, 2, 1–8.

    Google Scholar 

  • Williams, D. B., and Carter, C. B. Basic (Vol. 1). New York: Plenum Press.

    Google Scholar 

  • Yeh, M.-K., Coombes, A. G. A., Jenkins, P. G., and Davis, S. S. (1995). A novel emulsification-solvent extraction technique for production of protein loaded biodegradable microparticles for vaccine and drug delivery. Journal of Controlled Release, 33, 437–445.

    CAS  Google Scholar 

  • Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., and Jain, R. K. (1995). Vascular Permeability in Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 55(17), 3752–3756.

    CAS  PubMed  Google Scholar 

  • Zahr, A. S., Davis, C. A., and Pishko, M. V. (2006). Macrophage Uptake of Core-Shell Nanoparticles Surface Modified with Poly(ethylene glycol). Langmuir, 22, 8178–8185.

    CAS  PubMed  Google Scholar 

  • Zahr, A. S., de Villiers, M., and Pishko, M. V. (2005). Encapsulation of Drug Nanoparticles in Self-Assembled Macromolecular Nanoshells. Langmuir, 21(1), 403–410.

    CAS  PubMed  Google Scholar 

  • Zeta-Meter, I. (2006). Zeta Potential: A complete Course in 5 minutes (Catalog Information). Staunton, VA.

    Google Scholar 

  • Zhang, H., Mardyani, S., Chan, W. C., and Kumacheva, E. (2006). Design of Biocompatible Chitosan Microgels for Targeted pH-Mediated Intracellular Release of Cancer Therapeutics. Biomacromolecules, 7, 1568–1572.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Zahr, A.S., Pishko, M.V. (2009). Nanotechnology for Cancer Chemotherapy. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_16

Download citation

Publish with us

Policies and ethics