Skip to main content

Allelopathy from a Mathematical Modeling Perspective

  • Chapter
Allelopathy in Sustainable Agriculture and Forestry

Abstract

Of the disciplines involved in allelopathy research, mathematical modelling is making increasingly significant contributions. This chapter discusses, from a point of mathematical modelling view, some fundamental issues in allelopathy research, such as hormesis phenomenon and its interpretation, function of allelopathy and its relationship with competition, and periodic production of allelochemicals and stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, M., Johnson, I. and Lovett, J.V. (1993) Mathematical modelling of allelopathy: biological response to allelochemicals and its interpretation. J. Chem. Ecol. 19, 2379–2388.

    Article  CAS  Google Scholar 

  • An, M., Johnson, I.R. and Lovett, J.V. (1996) Mathematical modelling of allelopathy: I. Phytotoxicity of plant residues during decomposition. Allelopathy J. 3(1), 33–42.

    Google Scholar 

  • An, M., Pratley, J.E. and Haig, T. (2001) Phytotoxicity of vulpia residues: III. Biological activity of identified allelochemicals from vulpia residues J. Chem. Ecol. 27, 381–392.

    Google Scholar 

  • An, M., Liu, D.L., Johnson, I.R. and Lovett, J.V. (2003) Mathematical modelling of allelopathy: II. The dynamics of allelochemicals from living plants in the environment. Ecol. Model. 161, 53–66.

    Article  CAS  Google Scholar 

  • An, M., Pratley, J.E., Haig, T. and Liu, D.L. (2005) Whole-range assessment: a simple method for analysing allelopathic dose-response data. Nonlin. Biol. Toxicol. Med. 3(2), 245–259.

    Article  CAS  Google Scholar 

  • Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., and Vivanco, J.M. (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science. 301, 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Bell, D.T. and Koeppe, D.E. (1972) Noncompetitive effects of giant foxtail on the growth of corn. Agron. J. 64, 321–325.

    Google Scholar 

  • Bell, E.A. and Charlwood, B.V. (1980) Secondary Plant Products. Encyclopedia of Plant Physiology, New Series, Volume 8. Springer-Verlag, New York, p. 674.

    Google Scholar 

  • Belz, R. and Hurle, K. (2002) Dese-response: a challenge for allelopathy? 3rd World Congress on allelopathy – abstracts book, Tsukuba, Japan, August 26–30, p. 54.

    Google Scholar 

  • Blua, M.J. and Hanscom, Z. III. (1986) Isolation and characterization of glucocapparin in Isomeris arborea Nutt. J. Chem. Ecol. 12, 1449–1458.

    Article  CAS  Google Scholar 

  • Calabrese, E.J. and Baldwin, L.A. (2003) Hormesis: the dose-response revolution. Annu. Rev. Pharmacol. Toxicol. 43, 175–197.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H.H. (1995) Characterization of the mechanisms of allelopathy: modeling and experimental approaches. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC, pp. 132–141.

    Google Scholar 

  • Chou, C.H. (1983) Allelopathy in agroecosystems in Taiwan. In: C.H. Chou and G.R. Waller (Eds.), Allelochemicals and Pheromones. Institute of Botany, Academia Sinica Monograph Series No. 5, Taipei, Taiwan, pp. 27–64.

    Google Scholar 

  • Chou, C.H. (1989) The role of allelopathy in phytochemical ecology. In: C.H. Chou and G.R. Waller (Eds.), Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones. Institute of Botany, Academia Sinica Monograph Series No. 9, Taipei, ROC, pp. 19–38.

    Google Scholar 

  • Chou, C.H., Waller, G.R. and Reinhardt, C. (1999) Biodiversity and Allelopathy: from Organisms to Ecosystem in the Pacific. Academia Sinica, Taipei, p. 358.

    Google Scholar 

  • Clement, F.E., Weaver, J.E. and Hanson, H.C. (1929) Plant Competition – an Analysis of Community Function. Publ. No. 398. Carnegie Institution, Washington, DC, p. 340.

    Google Scholar 

  • Cruickshank, I.A.M. and Perrin, D.R. (1964) Pathological function of phenolic compounds in plants. In: J.B. Harborne (Ed.), Biochemistry of Phenolic Compounds. Academic Press, New York, pp. 551–544.

    Google Scholar 

  • Czarnota, M.A., Paul, R.N., Dayan, F.E., Nimbal, C.I. and Weston, L.A. (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Tech.15(4), 813–825.

    Article  CAS  Google Scholar 

  • Dakshini, K.M.M., Foy, C.L. and Inderjit (1999) Allelopathy: one component in a multifaceted approach to ecology. In: Inderjit, K.M.M. Dakshini and C.L. Foy (Eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, USA, p. 589.

    Google Scholar 

  • del Moral, R. (1972) On the variability of chlorogenic acid concentration. Oecologia. 9, 289–300.

    Google Scholar 

  • Devlin, R.M. and Witham, F.H. (1983)Plant physiology, 4th edition. PWS Publishers, California, p. 577.

    Google Scholar 

  • Dicosmo, F. and Towers, G.H.N. (1984) Stress and secondary metabolism in cultured plant cells. Rec. Adv. Phytochem. 18, 97–175.

    CAS  Google Scholar 

  • Donald, C.M. (1963) Competition among crop and pasture plants. Adv. Agron. 15, 1–119.

    Article  Google Scholar 

  • Dubey, B. and Hussain, J. (2000). A model for the allelopathic effect on two competing species. Ecol. Model. 129, 195–207.

    Article  CAS  Google Scholar 

  • Einhellig, F.A. (1989) Interactive effects of allelochemicals and environmental stress. In: C.H. Chou and G.R. Waller (Eds.), Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones. Institute of Botany, Academia Sinica Monograph Series No. 9, Taipei, ROC, pp. 101–118.

    Google Scholar 

  • Einhellig, F.A. (1995) Allelopathy: current status and future goals. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC, pp. 1–25.

    Google Scholar 

  • Farkas, G.L. and Kiraly, Z. (1962) Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopathol. Z. 44, 105–150.

    CAS  Google Scholar 

  • Fedtke, C. (1982) Biochemistry and Physiology of Herbicide Action. Springer-Verlag, Berlin, p. 202.

    Google Scholar 

  • Friend, J. (1979) Phenolic substances and plant disease. In: J.B. Harborne and C.F. van Sumere (Eds.), Biochemistry of Plant Phenolics. Plenum Press, London, pp. 557–588.

    Google Scholar 

  • Gayed, S.K. and Rosa, N. (1975) Levels of chlorogenic acid in tobacco cultivars; healthy and infected with Thielaviopsis basicola. Phytopathology. 65, 1049–1053.

    Article  CAS  Google Scholar 

  • Gilmore, A.R. (1977) Effects of soil moisture stress on monoterpenes in loblolly pine. J. Chem. Ecol. 3, 667–676.

    Article  CAS  Google Scholar 

  • Goslee, S.C., Peters, D.P.C. and Beck, K.G. (2001) Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion. Ecol. Model. 139, 31–45.

    Article  CAS  Google Scholar 

  • Harborne, J.B. (1987) Chemical signals in the ecosystem. Ann. Bot. 60, 39–57.

    CAS  Google Scholar 

  • Harborne, J.B. (1988)Introduction to Ecological Biochemistry, 3rd edition. Academic Press, London, p. 356.

    Google Scholar 

  • Harper, J.L. (1977) The Population Biology of Plants. Academic Press, London, p. 375.

    Google Scholar 

  • Harper, J.D.I., An, M., Wu, H. and Kent, JH. (Eds.) (2005) Proceedings of the 4th World Congress on Allelopathy. Charles Sturt University, Wagga Wagga, NSW, Australian. August 2005. International Allelopathy Society.

    Google Scholar 

  • Hartung, A.C. and Stephens, C.T. (1983) Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to Fusarium crown rot. J. Chem. Ecol. 8, 1163–1174.

    Article  Google Scholar 

  • Hedin, P.A. (1990) Bioregulator-induced changes in allelochemicals and their effects on plant resistance to pests. Crit. Rev. Plant Sci. 9, 371–379.

    CAS  Google Scholar 

  • Inderjit, Dakshini, K.M.M. and Einhellig, F.A. (1995) Allelopathy: Organisms, Processes and Applications. ACS Symposium Series 582. American Chemical Society, Washington, DC, p. 389.

    Google Scholar 

  • Inderjit, Dakshini, K.M.M. and Foy, C.L. (1999) Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, New York, USA, p. 589.

    Google Scholar 

  • James, W.O. (1946) Demonstration of alkaloids in Solanaceous meristems. Nature. 158, 377–378.

    Article  CAS  Google Scholar 

  • Koeppe, D.E., Rohrbaugh, L.M., Rice, E.L. and Wender, S.H. (1970) The effect of age and chilling temperatures on the concentration of scopolin and caffeoylquinic acids in tobacco. Physiol. Plant. 23, 258–266.

    Article  CAS  Google Scholar 

  • Kohli, R.K., Singh, H.P. and Batish, D.R. (2001)Allelopathy in Agroecosystems. Food Produts Press, New York, p. 447.

    Google Scholar 

  • Kuo, Y.L., Chiu, C.Y. and Chou, C.H. (1989) Comparative allelopathic dominance of tropical vegetation in the Hengchun Penisula of Southern Taiwan. In: C.H. Chou and G.R.Waller (Eds.), Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones. Institute of Botany, Academia Sinica Monograph Series No. 9, Taipei, ROC, pp. 303–314.

    Google Scholar 

  • Lehman, R.H. and Rice, E.L. (1972) Effect of deficiencies of nitrogen, potassium and sulphur on chlorogenic acids and scopolin in sunflower. Am. Midl. Nat. 87, 71–80.

    Article  CAS  Google Scholar 

  • Levin, D.A. (1971) Plant phenolics: an ecological perspective. Am. Nat. 105, 157–181.

    Article  CAS  Google Scholar 

  • Liu, D.L., An, M., Johnson, I.R. and Lovett, J.V. (2003) Mathematical modelling of allelopathy: III. A model for curve-fitting allelochemical dose-responses. Nonlin. Biol. Toxicol. Med. 1(1), 37–50.

    Article  Google Scholar 

  • Liu, D.L. and An, M. (2005) Implementation of CARD: curve-fitting allelochemical response data. Nonlin. Biol. Toxicol. Med. 3(2), 235–244.

    Article  CAS  Google Scholar 

  • Liu, D.L., An, M., Johnson, I.R. and Lovett, J.V. (2005) Mathematical modelling of allelopathy: IV. Assessment of contributions of competition and allelopathy to interference by barley. Nonlin. Biol. Toxicol. Med. 3(2), 213–224.

    Article  Google Scholar 

  • Loche, J. and Chouteau, J. (1963) Incidences des carences en Ca, Mg or P sur l’accumulation des polyphenol dans la feuille de tabac. C. R. Hebd. Seances Acad. Agric. Fr. 49, 1017–1026.

    Google Scholar 

  • Lovett, J.V. (1979) The ecological significance of odour in weeds. Proceedings 5th Conference of Asian-Pacific Weed Science Society, Sydney, pp. 335–338.

    Google Scholar 

  • Lovett, J.V., Levitt, J., Duffield, A.M. and Smith, N.G. (1981) Allelopathic potential of Datura stramonium L. (Thorn-apple). Weed Res. 21, 165–170.

    Article  Google Scholar 

  • Lovett, J.V. (1982) Allelopathy and self-defence in plant. Aust. Weeds 2, 33–35.

    Google Scholar 

  • Lovett, J.V. (1987) On Communities and Communication in Agriculture. University of New England, Armidale, NSW, p. 27.

    Google Scholar 

  • Lovett, J.V., Ryuntyu, M.Y. (1992) Allelopathy: broadening the context. In: S.J.H. Rizvi and V. Rizvi (Eds.), Allelopathy: Basic and Applied Aspects. Chapman & Hall, London, 11–20.

    Google Scholar 

  • Lovett, J.V. and Hoult, A.H.C. (1995) Allelopathy and self-defense in barley. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC, pp. 170–183.

    Google Scholar 

  • Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G. and Cutler, H.G. (1999) Recent Advances on Allelopathy Vol. I. A Science for the Future. Servicio De Publicationes, Universidad De Cadiz, Spain, p. 514.

    Google Scholar 

  • Martins, M.L. (2006) Exact solution for the An-Liu-Johnson-Lovett model related to the dynamics of allelochemicals in the environment. Ecol. Model. 193(3–4), 809–814.

    Article  CAS  Google Scholar 

  • Mason-Sedun, W. (1986) Differential phytotoxicity of residues from the genus Brassica. Ph.D. thesis, University of New England, .

    Google Scholar 

  • Mason-Sedun, W. and Jessop, R.S. (1989) Differential phytotoxicity among species and cultivars of the genus Brassica to wheat: III. Effects of environmental factors during growth on the phytotoxicity of residue extracts. Plant Soil. 117, 93–101.

    Article  Google Scholar 

  • McClure, J.M. (1975) Physiology and functions of flavonoids. In: J.B. Harborne, T.J. Mabry and H. Mabry (Eds.), The Flavonoids. Academic Press, London, pp. 970–1055.

    Google Scholar 

  • Molisch, H. (1937) Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer, Jena.

    Google Scholar 

  • Mothes, K. (1955) Physiology of alkaloids. Ann. Rev. Plant Physiol. 6, 393–442.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, A., Chattopadhyay, J. and Tapaswi, P.K. (1998) A delay differential equations model of plankton allelopathy. Mathem. Biosci. 149,167–189.

    Google Scholar 

  • Nakamaru, M. and Iwasa, Y. (2000) Competition by allelopathy proceeds in traveling waves: colicin-immune strain aids colicin-sensitive strain. Theor. Popul. Biol. 57, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Narwal, S.S., Hoagland, R.E., Dilday, R.H. and Reigosa, M.J. (1998) Allelopathy in Ecological Agriculture and Forestry. Kluwer Academic Publishers, London, p. 267.

    Google Scholar 

  • Niemeyer, H.M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-one), defence chemicals in the gramineae. Phytochemistry. 27, 3349–3358.

    Article  CAS  Google Scholar 

  • Niemeyer, H.M. and Jerez, J.M. (1997) Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity. 79,10–14.

    CAS  Google Scholar 

  • Overland, L. (1966) The role of allelopathic substances in the “smother crop” barley. Amr. J. Bot. 53, 423–432.

    Article  CAS  Google Scholar 

  • Putnam, A.R. and Tang, C.S. (1986) The Science of Allelopathy. John Wiley & Sons, New York, p. 317.

    Google Scholar 

  • Quader, M., Daggard, G., Barrow, R., Walker, S. and Sutherland, M.W. (2001) Allelopathy, DIMBOA production and genetic variability in accessions of Triticum speltoides. J. Chem. Ecol. 27, 747–760.

    Article  PubMed  CAS  Google Scholar 

  • Rice, E.L. (1984) Allelopathy, 2nd edition, Academic Press, New York, p. 421.

    Google Scholar 

  • Rice, E.L. (1985) Biological Control of Weeds and Plant Diseases-Advances in Applied Allelopathy. University of Oklahoma Press, Norman, USA, p. 439.

    Google Scholar 

  • Rizvi, S.J.H. and Rizvi, V. (1992)Allelopathy: Basic and Applied Aspects. Chapman and Hall, London, p. 448.

    Google Scholar 

  • Siemens, D.H., Garner, S.H., Mitchell-Olds, T. and Callaway, R.M. (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology. 83, 505–517.

    Google Scholar 

  • Singh, H.P., Kohli, R.K. and Batish, D.R. (2001) Allelopathy in agroecosystems: an overview. In: R.K Kohli, H.P. Singh and D.R. Batish (Eds.), Allelopathy in Agroecosystems. Food Produts Press, New York, pp. 1–44.

    Google Scholar 

  • Sinkkonen, A. (2001) Density-dependent chemical interference – an extension of the biological response model. J. Chem. Ecol. 27, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Sinkkonen, A. (2003) A model describing chemical interference caused by decomposing residues at different densities of growing plants. Plant Soil. 250(2), 315–322.

    Article  CAS  Google Scholar 

  • Sinkkonen, A. (2005) Modeling the effect of density-dependent chemical interference upon seed germination. Nonlin. Biol. Toxicol. Med. 3(2), 225–233.

    Article  CAS  Google Scholar 

  • Sole, J., Garcia-Ladona, E., Ruardij, P. and Estrada, M. (2005) Modelling allelopathy among marine algae. Ecol. Model. 183(4), 373–384.

    Article  Google Scholar 

  • Waller, G.R., Cheng, C.S., Chou, C.H., Kim, D., Yang, C.F., Huang, S.C. and Lin, Y.F. (1995) Allelopathic activity of naturally occurring compounds from mung beans (Vigna radiata) and their surrounding soil. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC, pp. 242–259.

    Google Scholar 

  • Walters, D.T. and Gilmore, A.R. (1976) Allelopathic effects of fescue on the growth of sweetgum. J. Chem. Ecol. 2, 469–479.

    Article  CAS  Google Scholar 

  • Waterman, P.G., Ross, J.A.M. and McKey, D.B. (1984) Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves of Barteria fistulosa (Passifloraceae). J. Chem. Ecol. 10, 387–401.

    Google Scholar 

  • Weidenhamer, J.D., Hartnett, D.C. and Romeo, J.T. (1989) Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26, 613–624.

    Article  CAS  Google Scholar 

  • Wink, M. and Bruning, B.L. (1995) Allelopathic properties of alkaloids and other natural products: possible modes of action. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig ( Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, DC, pp. 96–116.

    Google Scholar 

  • Wolfson, J.L. and Murdock, L.L. (1990) Growth of Manduca sexta on wounded tomato plants: role of induced proteinase inhibitors. Entomol. Exp. Appl. 54, 257–264.

    Article  Google Scholar 

  • Woodhead, S. and Bernays, E.A. (1978) The chemical basis of resistance of Sorghum bicolor to attack by Locusta migratoria. Ent. Exp. Appl. 24, 123–144.

    Article  CAS  Google Scholar 

  • Woodhead, S. (1981) Environmental and biotic factors affecting the phenolic content of different cultivars of Sorghum bicolor. J. Chem. Ecol. 7, 1035–1047.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., and Haig, T. (2000) Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions by Equal-Compartment-Agar-Method. Aust. J. Agric. Res. 51, 937–944.

    Article  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2001) Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27, 1691–1700.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media LLC

About this chapter

Cite this chapter

An, M., Liu, D.L., Wu, H., Liu, Y.H. (2008). Allelopathy from a Mathematical Modeling Perspective. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_9

Download citation

Publish with us

Policies and ethics