Skip to main content

Multiple Constraint Estimates of the European Carbon Balance

  • Chapter
The Continental-Scale Greenhouse Gas Balance of Europe

Part of the book series: Ecological Studies ((ECOLSTUD,volume 203))

The multiple-constraint approach has become a paradigm of carbon cycle research, in particular in assessments of regional carbon balances and its temporal evolution. In principle, trace gas budgets can be estimated by two complementary approaches: in the bottom-up method, local point-wise information (e.g., flux measurements or inventory data in representative locations) is scaled up to the region of interest using a combination of geographical information system (GIS) and remote sensing data. For the upscaling, various extrapolation procedures, diagnostic or prognostic models have to be used. In contrast, the top-down approach is based on atmospheric concentration measurements of the trace gas under consideration. In this case, the atmosphere is used as a natural integrator of the fluxes from the heterogeneous region of interest. Since the sources and sinks of the trace gas are reflected in spatial and temporal atmospheric concentration variations, observations of the latter can be used in an inverse model of atmospheric transport in order to determine the surface sources and sinks.

This chapter is focused on the European carbon balance. In principle, the multiple- constraint approach is also applicable to other regions of the globe and to other species such as CH4 (see Chap. 14). Although we believe that similar methodical limitations prevail in other areas, the relative importance may be different because of different environmental and historical conditions as well as different density and quality of the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bousquet, P., Peylin, P., Ciais, P., Le QuĂ©rĂ©, C., Friedlingstein, P. and Tans, P.P., 2000. Regional changes in carbon dioxide fluxes of land and oceans since1980. Science,290(5495): 1342-1346.

    Article  CAS  Google Scholar 

  • Caspersen, J.P., Pacala, S.W., Jenkins, J.C., Hurtt, G.C., Moorcroft, P.R. and Birdsey, R.A., 2000. Contributions of land-use history to carbon accumulation in U.S. forests. Science, 290: 1148-1151.

    Article  CAS  Google Scholar 

  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., OgĂ©e, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., GrĂĽnwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T. and Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529-533.

    Article  CAS  Google Scholar 

  • Ciais, P., Borges, A.V., Abril, G., Meybeck, M., Folberth, G., Hauglustaine, D. and Janssens, I.A., 2006. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences Discussions, 3: 1529-1559.

    Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F.I., Prentice, C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A. and Young-Molling, C., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373.

    Article  Google Scholar 

  • Enting, I.G., Trudinger, C.M., and Francey, R.J., 1995. A synthesis inversion of the concentration and 13C of atmospheric CO2. Tellus, 47B: 35-52.

    CAS  Google Scholar 

  • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P., 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282(5388): 442-446.

    Article  CAS  Google Scholar 

  • Feser, F., Weisse, R. and von Storch, H., 2001. Multi-decadal atmospheric modeling for Europe yields multi-purpose data. EOS Transactions, 82: 305-310.

    Article  Google Scholar 

  • Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I.Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B.C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C.-W., 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872): 626-630.

    Article  Google Scholar 

  • Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R.W.A., Ceulemans, R., Schulze, E.-D., Valentini, R. and Dolman, A.J., 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300: 1538-1542.

    Article  CAS  Google Scholar 

  • Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., Viovy, N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F. and Heimann, M., 2007. Uncertainties of modelling GPP over Europe: A systematic study on the effects of using different drivers and terrestrial  biosphere  models.  Global  Biogeochemical  Cycles, 21:  GB4021, doi:10.1029/2006GB002915.

    Google Scholar 

  • Jung, M., Henkel, K., Herold, M. and Churkina, G., 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101: 534-553.

    Article  Google Scholar 

  • Kaminski, T. and Heimann, M., 2001. Inverse modeling of atmospheric carbon dioxide fluxes. Science, 294(5541): 259a-259a.

    Article  Google Scholar 

  • Kaminski, T., Heimann, M., and Giering, R., 1999. A coarse grid three-dimensional global inverse model of the atmospheric transport. 2. Inversion of the transport of CO2 in the 1980s. Journal of Geophysical Research-Atmospheres, 104(D15): 18555-18581.

    Article  CAS  Google Scholar 

  • Kaminski, T., Knorr, W., Rayner, P.J. and Heimann, M., 2002. Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles, 16(4): 1066, doi:10.1029/2001GB001463.

    Article  CAS  Google Scholar 

  • Knorr, W. and Kattge, J., 2005. Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Global Change Biology, 11: 1333-1351.

    Article  Google Scholar 

  • McGuire, A.D., Sitch, S., Clein, J.S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D.W., Meier, R.A., Melillo, J.M., Moore, III B., Prentice, I.C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L.J., and Wittenberg, U., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15(1): 183-206.

    Article  CAS  Google Scholar 

  • Pacala, S.W., Hurtt, G.C., Baker, D., Peylin, P., Houghton, R.A., Birdsey, R.A., Heath, L., Sundquist, E.T., Stallard, R.F., Ciais, P., Moorcroft, P., Caspersen, J.P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M.E., Fan, S.-M., Sarmiento, J.L., Goodale, C.L., Schimel, D. and Field, C.B., 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292(5525): 2316-2320.

    Article  CAS  Google Scholar 

  • Papale, D. and Valentini, A., 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology,9(4): 525-535.

    Article  Google Scholar 

  • Ramankutti, N. et al., 2007. Global land-cover change: Recent progress, remaining challenges, In Land Use and Land Cover Change: Local Processes, Global Impacts, E. Lambin and H. Geist (eds.), Springer Verlag, New York.

    Google Scholar 

  • Rayner, P.J., Enting, I.G., Francey, R.J., and Langenfelds, R., 1999. Reconstructing the recent carbon cycle from atmospheric CO2, delta C-13 and O2 /N2 observations. Tellus, 51B: 213-232.

    CAS  Google Scholar 

  • Rayner, P.J., Scholze, M., Knorr, W., Kaminski, T., Giering, R. and Widmann, H., 2005. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 19(2): GB2026, doi:10.1029/2004GB002254.

    Google Scholar 

  • Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P., Cheng, Y.F., GrĂĽnzweig, J.M., Irvine, J., Joffre, R., Law, B.E., Loustau, D., Miglietta, F., Oechel, W., Ourcival, J.-M., Pereira, J.S., Peressotti, A., Ponti, F., Qi, Y., Rambal, S., Rayment, M., Romanya, J., Rossi, F., Tedeschi, V., Tirone, G., Xu, M. and Yakir, D., 2003. Modeling tem-poral and large-scale spatial variability of soil respiration from soil water availability, tempera-ture and vegetation productivity indices. Global Biogeochemical Cycles, 17 (4): 1104, doi:10.1029/2003GB002035.

    Article  CAS  Google Scholar 

  • Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M., 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics, 3: 1919-1964.

    Article  Google Scholar 

  • Rödenbeck, C. 2005. Estimating CO2 sources and sinks from atmospheric mixing ratio measure-ments using a global inversion of atmospheric transport. Tech. Rep. #6, Max-Planck-Institute for Biogeochemistry, Jena, 61 pp.

    Google Scholar 

  • Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K. and Venevsky, S., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2): 161-185.

    Article  Google Scholar 

  • Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N. and Heimann, M., 2007. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models. Biogeosciences Discussions, 4: 1-40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Heimann, M., Rödenbeck, C., Churkina, G. (2008). Multiple Constraint Estimates of the European Carbon Balance. In: Dolman, A.J., Valentini, R., Freibauer, A. (eds) The Continental-Scale Greenhouse Gas Balance of Europe. Ecological Studies, vol 203. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76570-9_17

Download citation

Publish with us

Policies and ethics