Skip to main content

Probing the Energy Landscape of Protein-Binding Reactions by Dynamic Force Spectroscopy

  • Chapter

Abstract

This chapter describes how the energy landscape that underlies protein-binding reactions can be revealed using dynamic force spectroscopy. The chapter begins with a detailed description of methodologies used and requirements of the experimental system, including tip and surface materials and their functionalization strategies. The next few sections discuss the fundamentals of measuring forces using the atomic force microscope, and the basics of performing force spectroscopy measurements from a practical point of view. Next, it presents an extensive account of methods for data analysis and current theoretical treatments. The remainder of the chapter illustrates the power of this methodology by several examples in which the location of energy barriers in a binding reaction pathway and their load-dependent dynamics are measured, the overall scale of roughness of the underlying energy surface is extracted, and alternative modes of protein activation are distinguished. Biological insight gained from these data is discussed. The intent is to provide the necessary theoretical and practical knowledge to begin force spectroscopy measurements on protein interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hunjan, J., A. Tovchigrechko, Y. Gao, and J. A. Vakser. 2008. The size of the intermolecular energy funnel in protein-protein interactions. Proteins 72:344–352.

    Google Scholar 

  2. Levy, Y., S. S. Cho, J. N. Onuchic, and P. G. Wolynes. 2005. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J Mol Biol 346:1121–1145.

    Google Scholar 

  3. Miller, D. W., and K. A. Dill. 1997. Ligand binding to proteins:the binding landscape model. Protein Sci 6:2166–2179.

    Google Scholar 

  4. O’Toole, N., and I. A. Vakser. 2008. Large-scale characteristics of the energy landscape in protein-protein interactions. Proteins 71:144–152.

    Google Scholar 

  5. Thielges, M. C., J. Zimmermann, W. Yu, M. Oda, and F. E. Romesberg. 2008. Exploring the energy landscape of antibody-antigen complexes:protein dynamics, flexibility, and molecular recognition. Biochemistry 47:7237–7247.

    Google Scholar 

  6. Tovchigrechko, A., and I. A. Vakser. 2001. How common is the funnel-like energy landscape in protein-protein interactions? Protein Sci 10:1572–1583.

    Google Scholar 

  7. Wang, J., L. Xu, and E. Wang. 2007. Optimal specificity and function for flexible biomolecular recognition. Biophys J 92:L109–111.

    Google Scholar 

  8. Wolynes, P. G. 2005. Recent successes of the energy landscape theory of protein folding and function. Q Rev Biophys 38:405–410.

    Google Scholar 

  9. Bustamante, C., Y. R. Chemla, N. R. Forde, and D. Izhaky. 2004. Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748.

    Google Scholar 

  10. Evans, E., and K. Ritchie. 1997. Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555.

    Google Scholar 

  11. Izrailev, S., S. Stepaniants, M. Balsera, Y. Dono, and K. Schulten. 1997. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581.

    Google Scholar 

  12. Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112.

    Google Scholar 

  13. Benoit, M., D. Gabriel, G. Gerisch, and H. E. Gaub. 2000. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317.

    Google Scholar 

  14. Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. 2003. Force measurements of the α5β1 integrin-fibronectin interaction. Biophys J 84:1252–1262.

    Google Scholar 

  15. Baumgartner, W., N. Golenhofen, N. Grundhofer, J. Wiegand, and D. Drenckhahn. 2003. Ca2+ Dependency of N-cadherin function probed by laser tweezer and atomic force microscopy. J Neurosci 23:11008–11014.

    Google Scholar 

  16. Fritz, J., A. G. Katopodis, F. Kolbinger, and D. Anselmetti. 1998. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA 95:12283–12288.

    ADS  Google Scholar 

  17. Chen, A., and V. T. Moy. 2000. Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 78:2814–2820.

    Google Scholar 

  18. Wong, J., A. Chilkoti, and V. T. Moy. 1999. Direct force measurements of the streptavidin-biotin interaction. Biomol Eng 16:45–55.

    Google Scholar 

  19. Riener, C. K., C. M. Stroh, A. Ebner, C. Klampfl, A. A. Gall, C. Romanin, Y. L. Lyubchenko, P. Hinterdorfer, and H. J. Gruber. 2003. Simple test system for single molecule recognition force microscopy. Anal Chim Acta 479:59–75.

    Google Scholar 

  20. Ebner, A., P. Hinterdorfer, H. J. Gruber. 2007. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107:922–927.

    Google Scholar 

  21. Ebner, A., F. Kienberger, C. Huber, A. S. Kamruzzahan, V. P. Pastushenko, J. Tang, G. Kada, H. J. Gruber, D. B. Sleytr, M. Sara, and P. Hinterdorfer. 2006. Atomic-force-microscopy imaging and molecular-recognition-force microscopy of recrystallized heterotetramers comprising an S-layer-streptavidin fusion protein. Chembiochem 7:588–591.

    Google Scholar 

  22. Lee, G. D., D. A. Kidwell, and R. J. Colton. 1994. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10:354–357.

    Google Scholar 

  23. De Paris, R., T. Strunz, K. Oroszlan, H.-J. Güntherrodt, and M. Hegner. 2000. Force spectroscopy and dynamics of the biotin-avidin bond studied by scanning force microscopy. Single Molecules 4:285–290.

    Google Scholar 

  24. Andrade, J. D., V. Hlady, A.-P. Wei, C.-H. Ho, A. S. Lea, S.I. Jeon, Y. S. Lin, and E. Stroup. 1992. Proteins at interfaces:principles, multivariate aspects, protein resistant surfaces, and direct imaging and manipulation of adsorbed proteins. Clin Mater 11:67–84.

    Google Scholar 

  25. Green, N. M. 1990. Avidin and streptavidin. Methods Enzymol 184:5l–67.

    Google Scholar 

  26. Sen, S., S. Subramanian, and D. E. Discher. 2005. Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89:3203–3213.

    Google Scholar 

  27. Almqvist, N., R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, 2004. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys J 86:1753–1762.

    Google Scholar 

  28. Scheuring, S., D. J. Muller, P. Ringler, J. B. Heymann, and A. Engel. 1999. Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope. J Microsc 193:28–35.

    Google Scholar 

  29. Bustamante, C., J. Vesenka, C. L. Tang, W. Rees, M. Guthold, and R. Keller. 1992. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26.

    Google Scholar 

  30. Feng, X. Z., R. Bash, P. Balagurumoorthy, D. Lohr, R. E. Harrington, and S. M. Lindsay. 2000. Conformational transition in DNA on a cold surface. Nucl Acids Res 28:593–596.

    Google Scholar 

  31. Stroh, C., H. Wang, R. Bash, B. Ashcroft, J. Nelson, H. Gruber, D. Lohr, S. M. Lindsay, and P. Hinterdorfer. 2004. Single-molecule recognition imaging-microscopy. Proc Natl Acad Sci USA 101:12503–12507.

    ADS  Google Scholar 

  32. Baumgartner, W., P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn. 2000. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010.

    ADS  Google Scholar 

  33. Ebner, A., F. Kienberger, G. Kada, C. M. Stroh, M. Geretschlager, A. S. M. Kamruzzahan, L. Wildling, W. T. Johnson, B. Ashcroft, J. Nelson, S. M. Lindsay, H. J. Gruber, and P. Hinterdorfer. 2005. Localization of single avidin-biotin interactions using simultaneous topography and molecular recognition imaging. Chem Phys Chem 6:897–900.

    Google Scholar 

  34. Stroh, C. M., A. Ebner, M. Geretschlager, G. Freudenthaler, F. Kienberger, A. S. M. Kamruzzahan, S. J. Smith-Gill, H. J. Gruber, and P. Hinterdorfer. 2004. Simultaneous topography and recognition imaging using force microscopy. Biophys J 87:1981–1990.

    Google Scholar 

  35. Willemsen, O., M. Snel, K. O. van der Werf, B. G. de Grooth, J. Greve, P. Hinterdorfer, H. Gruber, H. Schindler, Y. van Kooyk, and C. Figdor. 1998. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J 75:2220–2228.

    Google Scholar 

  36. Chen, X., M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards. 1997. Recognition of protein adsorption onto polymer surfaces by scanning force microscopy and probe-surface adhesion measurements with protein-coated probes. Langmuir 13:4106–4111.

    Google Scholar 

  37. Cross, B., F. Ronzon, B. Roux, and J. P. Rieu. 2005. Measurement of the anchorage force between GPI-anchored alkaline phosphatase and supported membranes by AFM force spectroscopy. Langmuir 21: 5149–5153.

    Google Scholar 

  38. Grange, W., T. Strunz, I. Schumakovitch, H.-J. Guntherodt, and M. Hegner. 2001. Molecular recognition and adhesion of individual DNA strands studied by dynamic force microscopy. Single Molecules 2:75–78.

    ADS  Google Scholar 

  39. Jiang, Y., C. Zhu, L. Ling, L. Wan, X. Fang, and C. Bai. 2003. Specific aptamer-protein interaction studied by atomic force microscopy. Anal Chem 75:2112–2116.

    Google Scholar 

  40. Ros, R., F. Schwesinger, D. Anselmetti, M. Kubon, R. Schafer, A. Pluckthun, and L. Tiefenauer. 1998. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad Sci USA 95:7402–7405.

    ADS  Google Scholar 

  41. Schwesinger, F., R. Ros, T. Strunz, D. Anselmetti, H. Guntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, and A. Pluckthun. 2000. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci USA 97:9972–9977.

    ADS  Google Scholar 

  42. Strunz, T., K. Oroszlan, R. Schafer, and H. J. Guntherodt. 1999. Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci USA 96:11277–11282.

    ADS  Google Scholar 

  43. Strunz, T., K. Oroszlan, I. Schumakovitch, H. Guntherodt, and M. Hegner. 2000. Model energy landscapes and the force-induced dissociation of ligand-receptor bonds. Biophys J 79:1206–1212.

    Google Scholar 

  44. Kamruzzahan, A. S. M., A. Ebner, L. Wildling, F. Kienberger, C. K. Riener, C. D. Hahn, P. D. Pollheimer, P. Winklehner, M. Holzl, B. Lackner, D. M. Schorkl, P. Hinterdorfer, and H. J. Gruber. 2006. Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjugate Chem 17:1473–1481.

    Google Scholar 

  45. Ebner, A., L. Wildling, A. S. M. Kamruzzahan, C. Rankl, J. Wruss, C. D. Hahn, M. Hölzl, F. Kienberger, D. Blaas, P. Hinterdorfer, and H. J. Gruber. 2007. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chem 18:1176–1184.

    Google Scholar 

  46. Puntheeranurak, T., L. Wildling, H. J. Gruber, R. K. Kinne, and P. Hinterdorfer. 2006. Ligands on the string:single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci 119:2960–2967.

    Google Scholar 

  47. Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler. 1996. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93:3477–3481.

    ADS  Google Scholar 

  48. Raab, A., W. Han, D. Badt, S. J. Smith-Gill, S. M. Lindsay, H. Schindler, and P. Hinterdorfer. 1999. Antibody recognition imaging by force microscopy. Nat Biotechnol 17:902–905.

    Google Scholar 

  49. Avci, R., M. Schweitzer, R. D. Boyd, J. Wittmeyer, A. Steele, J. Toporski, W. Beech, F. T. Arce, B. Spangler, K. M. Cole, and D. S. McKay. 2004. Comparison of antibody-antigen interactions on collagen measured by conventional immunological techniques and atomic force microscopy. Langmuir 20:11053–11063.

    Google Scholar 

  50. Hinterdorfer, P., K. Schilcher, W. Baumgartner, H. J. Gruber, and H. Schindler. 1998. A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy. Nanobiology 4:177–188.

    Google Scholar 

  51. Kada, G., L. Blayney, L. H. Jeyakumar, F. Kienberger, V. P. Pastushenko, S. Fleischer, H. Schindler, F. A. Lai, and P. Hinterdorfer. 2001. Recognition force microscopy/spectroscopy of ion channels:applications to the skeletal muscle Ca2+ release channel (RYR1). Ultramicroscopy 86:129–137.

    Google Scholar 

  52. Kienberger, F., Kada, G., Gruber, H. J., Pastushenko, P., Riener, C., Trieb, M., Knaus, H.-G., Schindler, H., and Hinterdorfer, P. 2000. Recognition force spectroscopy studies of the NTA-His6 bond. Single Molecules 1:25–31.

    ADS  Google Scholar 

  53. Kienberger, F., V. P. Pastushenko, G. Kada, H. J. Gruber, C. Riener, H. Schindler, and P. Hinterdorfer. 2000. Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy. Single Molecules 1:123–128.

    ADS  Google Scholar 

  54. Puntheeranurak, T., B. Wimmer, F. Castaneda, H. J. Gruber, P Hinterdorfer, and R. K. H. Kinne. 2007. Substrate specificity of sugar transport by rabbit SGLT1:single-molecule atomic force microscopy versus transport studies. Biochemistry 46:2797–2804.

    Google Scholar 

  55. Wang, H., R. Bash, S. M. Lindsay, and D. Lohr. 2005. Solution AFM studies of human Swi-Snf and its interactions with MMTV DNA and chromatin. Biophys J 89:3386–3398.

    Google Scholar 

  56. Wieland, J. A., A. A. Gewirth, and D. E. Leckband. 2005. Single molecule adhesion measurements reveal two homophilic neural cell adhesion molecule bonds with mechanically distinct properties. J Biol Chem 280:41037–41046.

    Google Scholar 

  57. Johnsson, B., S. Lofas, and G. Lindquist. 1991. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198: 268–277.

    Google Scholar 

  58. Hahn, C. D., C. Leitner, T. Weinbrenner, R. Schlapak, A. Tinazli, R. Tampe, B. Lackner, C. Steindl, P. Hinterdorfer, H. J. Gruber, and M. Holzl. 2007. Self-assembled monolayers with latent aldehydes for protein immobilization. Bioconjugate Chem 18:247–253.

    Google Scholar 

  59. Zara, J. J., R. D. Wooda, P. Boonb, C.-H. Kimc, N. Pomatoc, R. Bredehorst, and C.-W. Vogel. 1991. A carbohydrate-directed heterobifunctional cross-linking reagent for the synthesis of immunoconjugates. Anal Biochem 194:156–162.

    Google Scholar 

  60. Wielert-Badt, S., P. Hinterdorfer, H. Gruber, J. Lin, D. Badt, B. Wimmer, H. Schindler, and R. Kinne. 2002. Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Biophys J 82:2767–2774.

    Google Scholar 

  61. Haselgrübler, T., A. Amerstorfer, H. Schindler, and H. Gruber. 1995. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjugate Chem 6: 242–248.

    Google Scholar 

  62. Riener, C. K., F. Kienberger, C. D. Hahn, G. M. Buchinger, I. O. C. Egwim, T. Haselgrubler, A. Ebner, C. Romanin, C. Klampfl, B. Lackner, and H. J. Gruber. 2003. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Anal Chim Acta 497:101–114.

    Google Scholar 

  63. Nevo, R., Stroh, C., Kienberger, F., Kaftan, D., Brumfeld, V., Elbaum, M., Reich, Z., and Hinterdorfer, P. 2003. A molecular switch between alternative conformational states in the complex of Ran and importin β1. Nat Struct Biol 10:553–557.

    Google Scholar 

  64. Hölzl, M., A. Tinazli, C. Leitner, C. D. Hahn, B. Lackner, R. Tampe, and H. J. Gruber. 2007. Protein-resistant self-assembled monolayers on gold with latent aldehyde functions. Langmuir 23:5571–5577.

    Google Scholar 

  65. Peelen, D., and L. M. Smith. 2005. Immobilization of amine-modified oligonucleotides on aldehydeterminated alkanethiol monolayers on gold. Langmuir 21:266–271.

    Google Scholar 

  66. Ebner, A., L. Wildling, A. S. Kamruzzahan, C. Rankl, J. Wruss, C. D. Hahn, M. Holzl, R. Zhu, F. Kienberger, D. Blaas, P. Hinterdorfer, and H. J. Gruber. 2007. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate chemistry 18:1176–1184.

    Google Scholar 

  67. Langry, K. C., T. V. Ratto, R. E. Rudd, and M. W. McElfresh. 2005. The AFM measured force required to rupture the dithiolate linkage of thioctic acid to gold is less than the rupture force of a simple gold-alkyl thiolate bond. Langmuir 21:12064–12067.

    Google Scholar 

  68. Tournier, E. J. M., J. Wallach, and P. Blond. 1998. Sulfosuccinimidyl 4-(N-maleimidomethyl)-1-cyclohexane carboxylate as a bifunctional immobilization agent. Optimization of the coupling conditions. Anal Chim Acta 361:33–44.

    Google Scholar 

  69. Walsh, M. K., X. Wang, and B. C. Weimer. 2001. Optimizing the immobilization of single-stranded DNA onto glass beads. J Biochem Biophys Methods 47:221–231.

    Google Scholar 

  70. Karrasch, S., M. Dolder, F. Schabert, J. Ramsden, and A. Engel. 1993. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys J 65:2437–2446.

    Google Scholar 

  71. Horn, R., S. Ding, and H. Gruber. 2000. Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol 116:461–476.

    Google Scholar 

  72. Hegner, M., P. Wagner, and G. Semenza. 1993. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf Sci 291:39–46.

    ADS  Google Scholar 

  73. Tinazli, A., J. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, and R. Tampe. 2005. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. Chem Eur J 11:5249–5259.

    Google Scholar 

  74. Wagner, P., M. Hegner, H.-J. Güntherodt, and G. Semenza. 1995. Formation and in situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces. Langmuir 11:3867–3875.

    Google Scholar 

  75. Hahn, C. D., A. Tinazli, M. Hölzl, C. Leitner, F. Frederix, B. Lackner, N. Müller, C. Klampfl, R. Tampé, and H. J. Gruber. 2007. Pragmatic studies on protein-resistant self-assembled monolayers. Chem Monthly 138: 245–252.

    Google Scholar 

  76. Love, J. C., L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides. 2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170.

    Google Scholar 

  77. Harada, Y., M. Kuroda, and A. Ishida. 2000. Specific and quantized antigen-antibody interaction measured by atomic force microscopy. Langmuir 16:708–715.

    Google Scholar 

  78. Bonanni, B., A. S. M. Kamruzzahan, A. R. Bizzarri, C. Rankl, H. J. Gruber, P. Hinterdorfer, and S. Cannistraro. 2005. Single molecule recognition between cytochrome c 551 and gold-immobilized azurin by force spectroscopy. Biophys J 89:2783–2791.

    Google Scholar 

  79. Bustanji, Y., C. R. Arciola, M. Conti, E. Mandello, L. Montanaro, and B. Samori. 2003. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc Natl Acad Sci USA 100:13292–13297.

    ADS  Google Scholar 

  80. Conti, M., G. Donati, G. Cianciolo, S. Stefoni, and B. Samori. 2002. Force spectroscopy study of the adhesion of plasma proteins to the surface of a dialysis membrane:role of the nanoscale surface hydrophobicity and topography. J Biomed Mater Res 61:370–379.

    Google Scholar 

  81. Dean, D., L. Han, A. J. Grodzinsky, and C. Ortiz. 2006. Compressive nanomechanics of opposing aggrecan macromolecules. J Biomech 39:2555–2565.

    Google Scholar 

  82. Gad, M., A. Itoh, and A. Ikai. 1997. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol Int 21:697–706.

    Google Scholar 

  83. Boozer, C., S. Chen, and S. Jiang. 2006. Controlling DNA orientation on mixed ssDNA/OEG SAMs. Langmuir 22:4694–4698.

    Google Scholar 

  84. Green, N. H., P. M. Williams, O. Wahab, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and S. Allen. 2004. Single-molecule investigations of RNA dissociation. Biophys J 86:3811–3821.

    Google Scholar 

  85. Noy, A., D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber. 1997. Stretching and breaking duplex DNA by chemical force microscopy. Chem Biol 4:519–527.

    Google Scholar 

  86. Auletta, T., M. R. de Jong, A. Mulder, F. C. van Veggel, J. Huskens, D. N. Reinhoudt, S. Zou, S. Zapotoczny, H. Schonherr, G. J. Vancso, and L. Kuipers. 2004. β-Cyclodextrin host-guest complexes probed under thermodynamic equilibrium: thermodynamics and AFM force spectroscopy. J Am Chem Soc 126: 1577–1584.

    Google Scholar 

  87. Schönherr, H., M. W. J. Beulen, J. Bugler, J. Huskens, F. van Veggel, D. N. Reinhoudt, and G. J. Vancso. 2000. Individual supramolecular host-guest interactions studied by dynamic single molecule force spectroscopy. J Am Chem Soc 122:4963–4967.

    Google Scholar 

  88. Zapotoczny, S., T. Auletta, M. R. de Jong, H. Schonherr, J. Huskens, F. C. J. M. van Veggel, D. N. Reinhoudt, and G. J. Vaneso. 2002. Chain length and concentration dependence of β-cyclodextrin-ferrocene host-guest complex rupture forces probed by dynamic force spectroscopy. Langmuir 18:6988–6994.

    Google Scholar 

  89. Touhami, A., M. H. Jericho, and T. J. Beveridge. 2007. Molecular recognition forces between immunoglobulin G and a surface protein adhesin on living Staphylococcus aureus. Langmuir 23:2755–2760.

    Google Scholar 

  90. Touhami, A., B. Hoffmann, A. Vasella, F. A. Denis, and Y. F. Dufrene. 2003. Probing specific lectincarbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 19:1745–1751.

    Google Scholar 

  91. Ebner, A., L. Wildling, R. Zhu, C. Rankl, T. Haselgruuebler, P. Hinterdorfer, and H. J. Gruber. 2008. Functionalization of probe tips and supports for single-molecule recognition force spectroscopy. Top Curr Chem 285:29–76.

    Google Scholar 

  92. Muller, D. J., and A. Engel. 1997. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 73:1633–1644.

    Google Scholar 

  93. Gibson, C. T., G. S. Watson, and S. Myhra. 1996. Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7:259–262.

    ADS  Google Scholar 

  94. Cleveland, J. P., S. Manne, D. Bocek, and P. K. Hansma. 1993. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405.

    ADS  Google Scholar 

  95. Hutter, J. L., and J. Bechhoefer. 1993. Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873.

    ADS  Google Scholar 

  96. Sader, J. E., J. Pacifico, C. P. Green, and P. Mulvaney. 2005. General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. J Appl Phys 97:124903–124907.

    ADS  Google Scholar 

  97. Ohler, B. 2007. Practical Advice on the Determination of Cantilever Spring Constants. Veeco Instruments, Plainview, NY.

    Google Scholar 

  98. Butt, H. J., and M. Jaschke. 1995. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7.

    ADS  Google Scholar 

  99. Sader, J. E. 1998. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64–76.

    ADS  Google Scholar 

  100. Sader, J. E. 2008. Atomic force microscope cantilevers (Calibration method of Sader). Available at: http://www.ampc.ms.unimelb.edu.au/afm/. Accessed February 23, 2009.

    Google Scholar 

  101. Rosenblatt, M. 1956. Remarks on some nonparametric estimates of a density function. Ann Math Statist 27:832–837.

    MathSciNet  MATH  Google Scholar 

  102. Baumgartner, W., P. Hinterdorfer, and H. Schindler. 2000. Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 82:85–95.

    Google Scholar 

  103. Evans, E., and K. Ritchie. 1997. Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555.

    Google Scholar 

  104. Bell, G. I. 1978. Models for the specific adhesion of cells to cells. Science 200:618–627.

    ADS  Google Scholar 

  105. Evans, E., and K. Ritchie. 1999. Strength of a weak bond connecting flexible polymer chains. Biophys J 76:2439–2447.

    Google Scholar 

  106. Friedsam, C., A. K. Wehle, F. Kühner, and H. E. Gaub. 2003. Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length. J Phys: Condens Matter 15:S1709–S 1723.

    ADS  Google Scholar 

  107. Hummer, G., and A. Szabo. 2003. Kinetics from nonequilibrium single-molecule pulling experiments Biophys J 85:5–15.

    Google Scholar 

  108. Dudko, O. K., A. E. Filippov, J. Klafter, and M. Urbakh. 2003. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc Natl Acad Sci USA 100:11378–11381.

    ADS  Google Scholar 

  109. Dudko, O. K., G. Hummer, and A. Szabo. 2006. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101–108104.

    ADS  Google Scholar 

  110. Abramowitz, M., and I. A. Stegun. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.

    MATH  Google Scholar 

  111. Katletz, S., and U. M. Titulaer. 1999. A statistical model for antibody-antigeb binding. Condens Matter Phys 2:361–268.

    Google Scholar 

  112. Katletz, S. 2002. A statistical treatment of the dissociation of cooperative systems: application to the antibodyantigen system. Thesis, University of Linz, Linz, Austria.

    Google Scholar 

  113. Farkas, L. 1927. Keimbildungsgeschwindigkeit inubersattigten Dampfen. Z Physik Chem 125:236–242.

    Google Scholar 

  114. Yuan, C., A. Chen, P. Kolb, and V. T. Moy. 2000. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39:10219–10223.

    Google Scholar 

  115. Jarzynski, C. 1997. Nonequillibrium equality for free energy differences. Phys Rev Lett 78:2690–2693.

    ADS  Google Scholar 

  116. Jarzynski, C. 1997. Equilibrium free-energy differences from nonequilibrium measurements: A masterequation approach. Phys Rev E 56:5018–5035.

    ADS  Google Scholar 

  117. Hummer, G., and A. Szabo. 2001. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci USA 98:3658–3661.

    ADS  Google Scholar 

  118. Hummer, G., and A. Szabo. 2005. Free energy surfaces from single-molecule force spectroscopy. Acc Chem Res 38:504–513.

    Google Scholar 

  119. Preiner, J., H. Janovjak, C. Rankl, H. Knaus, D. A. Cisneros, A. Kedrov, F. Kienberger, D. J. Muller, and P. Hinterdorfer. 2007. Free energy of membrane protein unfolding derived from single-molecule force measurements. Biophys J 93:930.

    Google Scholar 

  120. Hoh, J. H., J. P. Cleveland, C. B. Prater, J. P. Revel, and P. K. Hansma. 1992. Quantized adhesion detected with the atomic force microscope. J Am Chem Soc 114:4917–4918.

    Google Scholar 

  121. Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. 1999. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53.

    ADS  Google Scholar 

  122. Moy, V. T., E. L. Florin, and H. E. Gaub. 1994. Intermolecular forces and energies between ligands and receptors. Science 266:257–259.

    ADS  Google Scholar 

  123. Chilkoti, A., T. Boland, B. D. Ratner, and P. S. Stayton. 1995. The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy. Biophys J 69:2125–2130.

    Google Scholar 

  124. Grubmuller, H., B. Heymann, and P. Tavan. 1996. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999.

    ADS  Google Scholar 

  125. Yuan, C., A. Chen, P. Kolb, and V. T Moy. 2000. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39:10219–10223.

    Google Scholar 

  126. Hanley, W. D., D. Wirtz, and K. Konstantopoulos. 2004. Distinct kinetic and mechanical properties govern selectin-Ieukocyte interactions. J Cell Sci 117:2503–2511.

    Google Scholar 

  127. Fritz, J., A. G. Katopodis, F. Kolbinger, and D. Anselmetti. 1998. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA 95:12283–12288.

    ADS  Google Scholar 

  128. Evans, E., A. Leung, D. Hammer, and S. Simon. 2001. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci USA 98:3784–3789.

    ADS  Google Scholar 

  129. Marshall, B. T., M. Long, J. W. Piper, T. Yago, R. P. McEver, and C. Zhu. 2003. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193.

    ADS  Google Scholar 

  130. Wojcikiewicz, E. P., M. H. Abdulreda, X. Zhang, and V. T. Moy. 2006. Force spectroscopy of LFA-1 and its ligands, ICAM-l and ICAM-2. Biomacromolecules 7:3188–3195.

    Google Scholar 

  131. Odorico, M., J. M. Teulon, T. Bessou, C. Vidaud, L. Bellanger, S. W. W. Chen, E. Quemeneur, P. Parot, and J. L. Pellequer. 2007. Energy landscape of chelated uranyl: Antibody interactions by dynamic force spectroscopy. Biophysical Journal 93:645–654.

    ADS  Google Scholar 

  132. Schwesinger, F., R. Ros, T. Strunz, D. Anselmetti, H. J. Guntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, and A. Pluckthun. 2000. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci USA 97:9972–9977.

    ADS  Google Scholar 

  133. Neuert, G., C. Albrecht, E. Pamir, and H. E. Gaub. 2006. Dynamic force spectroscopy of the digoxigeninantibody complex. FEBS Lett 580:505–509.

    Google Scholar 

  134. Schlierf, M., and M. Rief. 2006. Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape. Biophys J 90:L33–L35.

    Google Scholar 

  135. Evstigneev, M., and P. Reimann. 2003. Dynamic force spectroscopy: optimized data analysis. Phys Rev E 68, 045103 1–4.

    ADS  Google Scholar 

  136. Katletz, S., C. Borken, H. Schindler, P. Hinterdorfer, and U. M. Titulaer. 2000. A statistical model for antibodyantigen unbinding and its application to lysozyme-anti lysozyme. Single Molecules 1:173.

    ADS  Google Scholar 

  137. Katletz, S., C. M. Stroh, P. Hinterdorfer, and U. Titulaer. In preparation.

    Google Scholar 

  138. Rankl, C., F. Kienberger, Z. Rong, H. J. Gruber, J. Wruss, D. Blaas, and P. Hinterdorfer. Concatemers of ligand binding repeat 3 of human VLDL-receptor attach to HRV2 via multiple modules: determination of the unbinding force on the single molecule level by force spectrometry. In preparation.

    Google Scholar 

  139. Verdaguer, N., I. Fita, M. Reithmayer, R. Moser, and D. Blaas. 2004. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 11:429–434.

    Google Scholar 

  140. Moser, R., L. Snyers, J. Wruss, J. Angulo, H. Peters, T. Peters, and D. Blaas. 2005. Neutralization of a common cold virus by concatemers of the third ligand binding module of the VLDL-receptor strongly depends on the number of modules. Virology 338:259–269.

    Google Scholar 

  141. Baldwin, R. L. 1994. Protein-folding-matching speed and stability. Nature 369:183–184.

    ADS  Google Scholar 

  142. Bryngelson, J. D., J. N. Onuchic, N. D. Socci, and P. G. Wolynes. 1995. Funnels, pathways, and the energy landscape of protein-folding-a synthesis. Proteins 21:167–195.

    Google Scholar 

  143. Thirumalai, D., and S. A. Woodson. 1996. Kinetics of folding of proteins and RNA. Acc Chem Res 29: 433–439.

    Google Scholar 

  144. Dill, K. A. 1999. Polymer principles and protein folding. Protein Sci 8:1166–1180.

    Google Scholar 

  145. Dobson, C. M., and M. Karplus. 1999. The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol 9:92–101.

    Google Scholar 

  146. Kumar, S., B. Ma, C. J. Tsai, N. Sinha, and R. Nussinov. 2000. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9:10–19.

    Google Scholar 

  147. Onuchic, J. N., and P. G. Wolynes. 2004. Theory of protein folding. Curr Opin Struct Biol 14:70–75.

    Google Scholar 

  148. Ansari, A., J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young. 1985. Protein states and proteinquakes. Proc Natl Acad Sci USA 82:5000–5004.

    ADS  Google Scholar 

  149. Bryngelson, J. D., and P. G. Wolynes. 1987. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84:7524–7528.

    ADS  Google Scholar 

  150. Bryngelson, J. D., and P. G. Wolynes. 1989. Intermediates and barrier crossing in a random energy-model (with applications to protein folding). J Phys Chem 93:6902–6915.

    Google Scholar 

  151. Clementi, C., H. Nymeyer, and J. N. Onuchic. 2000. Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953.

    Google Scholar 

  152. Brockwell, D. J., and S. E. Radford. 2007. Intermediates: ubiquitous species on folding energy landscapes? Curr Opin Struct Biol 17:30–37.

    Google Scholar 

  153. Guo, Z. Y., and D. Thirumalai. 1995. Kinetics of protein-folding—nucleation mechanism, time scales, and pathways. Biopolymers 36:83–102.

    Google Scholar 

  154. Thirumalai, D., and S. A. Woodson. 2000. Maximizing RNA folding rates: A balancing act. RNA 6: 790–794.

    Google Scholar 

  155. Gruebele, M. 2005. Downhill protein folding: evolution meets physics. C R Biologies 328:701–712.

    Google Scholar 

  156. Lapidus, L. J., W. A. Eaton, and J. Hofrichter. 2000. Measuring the rate of intramolecular contact formation in polypeptides. Proc Natl Acad Sci USA 97:7220–7225.

    ADS  Google Scholar 

  157. Hyeon, C. B., and D. Thirumalai. 2003. Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc Natl Acad Sci USA 100:10249–10253.

    ADS  Google Scholar 

  158. Zwanzig, R. 1988. Diffusion in a rough potential. Proc Natl Acad Sci USA 85:2029–2030.

    MathSciNet  ADS  Google Scholar 

  159. Hyeon, C., and D. Thirumalai. 2007. Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments. J Phys Condens Mat 19:(11)1–27.

    Google Scholar 

  160. Nevo, R., V. Brumfeld, R. Kapon, P. Hinterdorfer, and Z. Reich. 2005. Direct measurement of protein energy landscape roughness. EMBO Rep 6:482–486.

    Google Scholar 

  161. Rico, F., and V. T. Moy. 2007. Energy landscape roughness of the streptavidin-biotin interaction. J Mol Recognit 20:495–501.

    Google Scholar 

  162. Schlierf, M., and M. Rief. 2005. Temperature softening of a protein in single-molecule experiments. J Mol Biol 354:497–503.

    Google Scholar 

  163. Janovjak, H., H. Knaus, and D. J. Muller. 2007. Transmembrane helices have rough energy surfaces. J Am Chem Soc 129:246–247.

    Google Scholar 

  164. Koshland, D. E. 1958. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104.

    ADS  Google Scholar 

  165. Koshland, D. E., Jr., G. Nemethy, and D. Filmer. 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385.

    Google Scholar 

  166. Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118.

    Google Scholar 

  167. James, L. C., P. Roversi, and D. S. Tawfik. 2003. Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367.

    Google Scholar 

  168. Volkman, B. F, D. Lipson, D. E. Wemmer, and D. Kern. 2001. Two-state allosteric behavior in a single-domain signaling protein. Science 291:2429–2433.

    ADS  Google Scholar 

  169. Nevo, R., C. Stroh, F. Kienberger, D. Kaftan, V. Brumfeld, M. Elbaum, Z. Reich, and P. Hinterdorfer. 2003. A molecular switch between alternative conformational states in the complex of Ran and importin beta 1. Nat Struct Biol 10:553–557.

    Google Scholar 

  170. Nevo, R., V. Brumfeld, M. Elbaum, P. Hinterdorfer, and Z. Reich. 2004. Direct discrimination between models of protein activation by single-molecule force measurements. Biophys J 87:2630–2634.

    Google Scholar 

  171. Ritco-Vonsovici, M., A. Ababou, and M. Horton. 2007. Molecular plasticity of beta-catenin: new insights from single-molecule measurements and MD simulation. Protein Sci 16:1984–1998.

    Google Scholar 

  172. Gilbert, Y., M. Deghorain, L. Wang, B. Xu, P. D. Pollheimer, H. J. Gruber, J. Errington, B. Hallet, X. Haulot, C. Verbelen, P. Hols, and Y. F. Dufrene. 2007. Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. Nano Lett 7:796–801.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ebner, A. et al. (2009). Probing the Energy Landscape of Protein-Binding Reactions by Dynamic Force Spectroscopy. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_15

Download citation

Publish with us

Policies and ethics