Skip to main content

Angiotensin-Induced Hypoxia in the Kidney: Functional and Structural Changes of the Renal Circulation

  • Conference paper
Hypoxia and the Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

Recent studies emphasize the role of chronic hypoxia in the kidney as a final common pathway to end-stage renal disease (ESRD). Hypoxia of tubular cells leads to apoptosis or epithelial-mesenchymal transdifferentiation. This in turn exacerbates fibrosis of the kidney with loss of peritubular capillaries and subsequent chronic hypoxia, setting in train a vicious cycle whose end point is ESRD. To support this notion, our studies utilizing various techniques such as hypoxia-sensing transgenic rats revealed hypoxia of the kidney in various disease models.

While fibrotic kidneys with advanced renal disease are devoid of peritubular capillary blood supply and oxygenation to the corresponding region, imbalances in vasoactive substances and associated intrarenal vasoconstriction can cause chronic hypoxia even at the early phase of kidney disease. Among various vasoactive substances, local activation of RAS is especially important because it can lead to constriction of efferent arterioles, hypoperfusion of postglomerular peritubular capillaries, and subsequent hypoxia of the tubulointerstitium in the downstream compartment. Recent studies using BOLD-MRI showed an immediate decrease of oxygen tension in the kidney after angiotensin II infusion. In addition, angiotensin II induces oxidative stress via activation of NADPH oxidase. Oxidative stress damages endothelial cells directly, causing the loss of peritubular capillaries. Oxidative stress also results in relative hypoxia due to inefficient cellular respiration. Thus, angiotensin II induces renal hypoxia via both hemodynamic and nonhemodynamic mechanisms.

While the beneficial effects of blockade of RAS in kidney disease are, at least in part, mediated by amelioration of hypoxia, recent studies have also elucidated the mechanism of hypoxia-induced gene regulation via the HIF-HRE system. This has given hope for the development of novel therapeutic approaches against hypoxia in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler S, Huang H, Loke KE, Xu X, Tada H, Laumas A, and Hintze TH. Endothelial nitric oxide synthase plays an essential role in regulation of renal oxygen consumption by NO. Am J Physiol Renal Physiol280: F838-843, 2001.

    Google Scholar 

  2. Adler S, and Huang H. Impaired regulation of renal oxygen consumption in spontaneously hypertensive rats. J Am Soc Nephrol13:1788-1794, 2002.

    Article  CAS  PubMed  Google Scholar 

  3. Adler S, and Huang H. Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase. Am J Physiol Renal Physiol287, F907-913, 2004.

    Article  Google Scholar 

  4. Adler S, Huang H, Wolin MS, and Kaminski PM. Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J Am Soc Nephrol15:52-60, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Botros FT, Schwartzman ML, Stier CT Jr, Goodman AI, and Abraham NG. Increase in heme oxygenase-1 levels ameliorates renovascular hypertension. Kidney Int68:2745-2755, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Deng A, Miracle CM, Suarez JM, Lortie M, Satriano J, Thomson SC, Munger KA, and Blantz RC. Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II. Kidney Int68:723-730, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Di Noia MA, van Driesche S, Palmieri F, Yang LM, Quan S, Goodman AI, and Abraham NG. Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes. J Biol Chem281:15687-15693, 2006.

    Article  PubMed  Google Scholar 

  8. Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, and Willam C. Role of hypoxia in the pathogenesis of renal disease. Kidney Int 99: S46-51, 2005.

    Article  Google Scholar 

  9. Goncalves GM, Cenedeze MA, Feitoza CQ, Wang PM, Bertocchi AP, Damiao MJ, Pinheiro HS, Antunes Teixeira VP, dos Reis MA, Pacheco-Silva A, and Camara NO. The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury. Kidney Int70:1742-1749, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Izuhara Y, Nangaku M, Inagi R, Tominaga N, Aizawa T, Kurokawa K, van Ypersele de Strihou C, and Miyata T. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J Am Soc Nephrol16:3631-3641, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. Kairaitis LK, Wang Y, Gassmann M, Tay YC, and Harris DC. HIF-1alpha expression follows microvascular loss in advanced murine adriamycin nephrosis. Am J Physiol Renal Physiol288: F198-206, 2005.

    Article  Google Scholar 

  12. Kang DH, Anderson S, Kim YG, Mazzalli M, Suga S, Jefferson JA, Gordon KL, Oyama TT, Hughes J, Hugo C, Kerjaschki D, Schreiner GF, and Johnson RJ. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis37:601-611, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Kang DH, Hughes J, Mazzali M, Schreiner GF, and Johnson RJ. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 12:1448-1457, 2001.

    CAS  PubMed  Google Scholar 

  14. Kiberd B. The chronic kidney disease epidemic: Stepping back and looking forward. J Am Soc Nephrol17:2967-2973, 2006.

    Article  PubMed  Google Scholar 

  15. Kitayama H, Maeshima Y, Takazawa Y, Yamamoto Y, Wu Y, Ichinose K, Hirokoshi K, Sugiyama H, Yamasaki Y, and Makino H. Regulation of angiogenic factors in angiotensin II infusion model in association with tubulointerstitial injuries. Am J Hypertens19:718-727, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Kobori H, Nangaku M, Navar LG, and Nishiyama A. Independent regulation of intrarenal angiotensin II and impact of antihypertensive agents. Pharmacol Rev in press

    Google Scholar 

  17. Kojima I, Tanaka T, Inagi R, Kato H, Yamashita T, Sakiyama A, Ohneda O, Takeda N, Sata M, Miyata T, Fujita T, and Nangaku M. Protective role of HIF-2 alpha against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol:218-26, 2007

    Google Scholar 

  18. Kondo N, Kiyomoto H, Yamamoto T, Miyatake A, Sun GP, Rahman M, Hitomi H, Moriwaki K, Hara T, Kimura S, Abe Y, Kohno M, and Nishiyama A. Effects of calcium channel blockade on angiotensin II-induced peritubular ischemia in rats. J Pharmacol Exp Ther316:1047-1052, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Kudo Y, Kakinuma Y, Mori Y, Morimoto N, Karashima T, Furihata M, Sato T, Shuin T, and Sugiura T. Hypoxia-inducible factor-1alpha is involved in the attenuation of experimentally induced rat glomerulonephritis. Nephron Exp Nephrol100: e95-103, 2005.

    Article  Google Scholar 

  20. Laycock SK, Vogel T, Forfia PR, Tuzman J, Xu X, Ochoa M, Thompson CI, Nasjletti A, and Hintze TH. Role of nitric oxide in the control of renal oxygen consumption and the regulation of chemical work in the kidney. Circ Res82:1263-1271, 1998.

    CAS  PubMed  Google Scholar 

  21. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: Pathological significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1-12, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Loboda A, Jazwa A, Wegiel B, Jozkowicz A, and Dulak J. Heme oxygenase-1- dependent and -independent regulation of angiogenic genes expression: effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells. Cell Mol Biol51:347-355, 2005.

    CAS  PubMed  Google Scholar 

  23. Manotham K, Tanaka T, Matsumoto M, Ohse T, Inagi R, Miyata T, Kurokawa K, Fujita T, Ingelfinger JR, and Nangaku M. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int65:871-880, 2004.

    Article  PubMed  Google Scholar 

  24. Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, and Nangaku M. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol15:1277-1288, 2004.

    Article  PubMed  Google Scholar 

  25. Matsumoto M, Tanaka T, Yamamoto T, Noiri E, Miyata T, Inagi R, Fujita T, and Nangaku M. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol15:1574-1581, 2004.

    Article  PubMed  Google Scholar 

  26. Matsumoto M, Makino Y, Tanaka T, Tanaka H, Ishizaka N, Noiri E, Fujita T, and Nangaku M. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J Am Soc Nephrol14:1825-1832, 2003.

    Article  PubMed  Google Scholar 

  27. Miyata T, vanYpersele de Strihou C, Ueda Y, Ichimori K, Inagi R, Onogi H, Ishikawa N, Nangaku M, and Kurokawa K. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol13:2478-2487, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa T, Kang DH, Ohashi R, Suga S, Herrera-Acosta J, Rodriguez-Iturbe B, and Johnson RJ. Tubulointerstitial disease: role of ischemia and microvascular disease. Curr Opin Nephrol Hypertens12:233-241, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura M, Yamabe H, Osawa H, Nakamura N, Shimada M, Kumasaka R, Murakami R, Fujita T, Osanai T, and Okumura K. Hypoxic conditions stimulate the production of angiogenin and vascular endothelial growth factor by human renal proximal tubular epithelial cells in culture. Nephrol Dial Transplant21:1489-1495, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Namikoshi T, Satoh M, Horike H, Fujimoto S, Arakawa S, Sasaki T, and Kashihara N. Implication of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy. Nephron Physiol102:9-16, 2006.

    Article  Google Scholar 

  31. Nangaku M. Hypoxia and tubulointerstitial injury: a final common pathway to endstage renal failure. Nephron Exp Nephrol98: e8-12, 2004.

    Article  Google Scholar 

  32. Nangaku M. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med43:9-17, 2004.

    Article  CAS  PubMed  Google Scholar 

  33. Nangaku M, Ohse T, Tanaka T, Kojima I, and Fujita T. Renoprotection with antihypertensives: reduction of proteinuria and improvement of oxygenation via inhibition of the renin-angiotensin system. Curr Hypertens Rev1:67-76, 2005.

    Article  CAS  Google Scholar 

  34. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol17:17-25, 2006.

    Article  CAS  PubMed  Google Scholar 

  35. Norman JT, Stidwill R, Singer M, and Fine LG. Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol94:39-46, 2003.

    Article  Google Scholar 

  36. Norman JT, and Fine LG. Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol33:989-996, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Ohashi R, Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y, and Yamanaka N. Peritubular capillary regression during the progression of experimental obstructive nephropathy. J Am Soc Nephrol13:1795-1805, 2002.

    Article  PubMed  Google Scholar 

  38. Ohashi R, Kitamura H, and Yamanaka N. Peritubular capillary injury during the progression of experimental glomerulonephritis in rats. J Am Soc Nephrol11:47-56, 2000.

    CAS  PubMed  Google Scholar 

  39. Palm F, Cederberg J, Hansell P, Liss P, and Carlsson PO. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia46:1153-1160, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Palm F, Ortsater H, Hansell P, Liss P, and Carlsson PO. Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin-diabetic rat model. Diabetes Metab Res Rev20:452-459, 2004.

    Article  PubMed  Google Scholar 

  41. Ries M, Basseau F, Tyndal B, Jones R, Deminiere C, Catargi B, Combe C, Moonen CW, and Grenier N. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging17:104-113, 2003.

    Article  PubMed  Google Scholar 

  42. Safran M, Kim WY, O’Connell F, Flippin L, Gunzler V, Horner JW, Depinho RA, and Kaelin WG Jr. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci103:105-110, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Schachinger H, Klarhofer M, Linder L, Drewe J, and Scheffler K. Angiotensin II decreases the renal MRI blood oxygenation level-dependent signal. Hypertension47:1062-1066, 2006.

    Article  CAS  PubMed  Google Scholar 

  44. Shao J, Nangaku M, Miyata T, Inagi R, Yamada K, Kurokawa K, and Fujita T. Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension42:31-38, 2003.

    Article  CAS  PubMed  Google Scholar 

  45. Shao J, Nangaku M, Inagi R, Kato H, Miyata T, Matsusaka T, and Fujita T. Receptorindependent intracellular radical scavenging activity of an angiotensin II receptor blocker. J Hypertens in press

    Google Scholar 

  46. Sun D, Feng J, Dai C, Sun L, Jin T, Ma J, and Wang L. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy. Am J Nephrol26:363-371, 2006.

    Article  PubMed  Google Scholar 

  47. Tanaka T, Hanafusa N, Ingelfinger JR, Ohse T, Fujita T, and Nangaku M. Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF-1-mediated upregulation of Bax. Biochem Biophys Res Commun309:222-231, 2003.

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka T, Miyata T, Inagi R, Kurokawa K, Adler S, Fujita T, and Nangaku M. Hypoxia-induced apoptosis in cultured glomerular endothelial cells -involvement of mitochondrial pathways. Kidney Int64:2020-2032, 2003.

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka T, Miyata T, Inagi R, Fujita T, and Nangaku M. Hypoxia in renal disease with proteinuria and/or glomerular hypertension. Am J Pathol165:1979-1992, 2004.

    PubMed  Google Scholar 

  50. Tanaka T, Nangaku M, Miyata T, Inagi R, Ohse T, Ingelfinger JR, and Fujita T. Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells. J Am Soc Nephrol 15:2320-2333, 2004.

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, Fujita T, and Nangaku M. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int68:2714-2725, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, and Nangaku M. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest85:1292-1307, 2005.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka T, Kojima I, Ohse T, Inagi R, Miyata T, Ingelfinger JR, Fujita T, and Nangaku M. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am J Physiol Renal Physiol289: F1123-1133, 2005.

    Article  Google Scholar 

  54. Tanaka T, Kato H, Kojima I, Ohse T, Son D, Tawakami T, Yatagawa T, Inagi R, Fujita T, and Nangaku M. Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci61:795-805, 2006.

    PubMed  Google Scholar 

  55. Welch WJ, Mendonca M, Aslam S, and Wilcox CS. Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2 K,1C kidney. Hypertension41:692-696, 2003.

    Article  CAS  PubMed  Google Scholar 

  56. Welch WJ, Baumgartl H, Lubbers D, and Wilcox CS. Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int63:202-208, 2003.

    Article  CAS  PubMed  Google Scholar 

  57. Welch WJ, Blau J, Xie H, Chabrashvili T, and Wilcox CS. Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol288: H22-28, 2005.

    Article  Google Scholar 

  58. Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int70:1914-1919, 2006.

    CAS  PubMed  Google Scholar 

  59. Yildirim O, and Buyukbingol Z. In vivo effect of vitamin C with cobalt on oxidative stress in experimental diabetic rat kidney. Diabetes Nutr Metab16:208-213, 2003.

    CAS  PubMed  Google Scholar 

  60. Yuan HT, Li XZ, Pitera JE, Long DA, and Woolf AS. Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor-A and hypoxia-inducible factor-1 alpha. Am J Pathol163:2289-2301, 2003.

    CAS  PubMed  Google Scholar 

  61. Zhang B, Liang X, Shi W, Ye Z, He C, Hu X, and Liu S. Role of impaired peritubular capillary and hypoxia in progressive interstitial fibrosis after 56 subtotal nephrectomy of rats. Nephrology10:351-357, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nangaku, M., Inagi, R., Miyata, T., Fujita, T. (2007). Angiotensin-Induced Hypoxia in the Kidney: Functional and Structural Changes of the Renal Circulation. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_7

Download citation

Publish with us

Policies and ethics