Skip to main content

Intersections of Schubert varieties and other permutation array schemes

  • Chapter
Algorithms in Algebraic Geometry

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 146))

Abstract

Using a blend of combinatorics and geometry, we give an algorithm for algebraically finding all flags in any zero-dimensional intersection of Schubert varieties with respect to three transverse flags, and more generally, any number of flags. The number of flags in a triple intersection is also a structure constant for the cohomology ring of the flag manifold. Our algorithm is based on solving a limited number of determinantal equations for each intersection (far fewer than the naive approach in the case of triple intersections). These equations may be used to compute Galois and monodromy groups of intersections of Schubert varieties. We are able to limit the number of equations by using the permutation arrays of Eriksson and Linusson, and their permutation array varieties, introduced as generalizations of Schubert varieties. We show that there exists a unique permutation array corresponding to each realizable Schubert problem and give a simple recurrence to compute the corresponding rank table, giving in particular a simple criterion for a Littlewood-Richardson coefficient to be 0. We describe pathologies of Eriksson and Linusson’s permutation array varieties (failure of existence, irreducibility, equidimensionality, and reducedness of equations), and define the more natural permutation array schemes. In particular, we give several counterexamples to the Readability Conjecture based on classical projective geometry. Finally, we give examples where Galois/monodromy groups experimentally appear to be smaller than expected.

supported by NSF grant DMS-9983797.

supported by NSF grant DMS-0238532.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. ARDILA AND S. BiLLEY, Flag arrangements and triangulations of products of simplices, to appear in Advances in Math.

    Google Scholar 

  2. S.D. COHEN, The distribution of Galois groups and Hubert’s irreducibility theorem, Proc. London Math. Soc. (3) 43 (1981), no. 2, 227–250.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. COSKUN, A Littlewood-Richarson rule for the two-step flag varieties, preprint, 2004.

    Google Scholar 

  4. I. COSKUN AND R. VAKIL, Geometric positivity in the co-homology of homogeneous spaces and generalized Schubert calculus, arXiv:math.AG/0610538.

    Google Scholar 

  5. H.S.M. COXETER AND S.L. GREITZER, Geometry Revisited, Math. Ass. of Amer., New Haven, 1967.

    MATH  Google Scholar 

  6. L. DICKSON, H.F. BUCHFELDT, AND G.A. MILLER, Theory and applications of finite groups, John Wiley, New York, 1916.

    MATH  Google Scholar 

  7. D. EISENBUD AND D. SALTMAN, Rank varieties of matrices, Commutative algebra (Berkeley, CA, 1987), 173–212, Math. Sci. Res. Inst. Publ. 15, Springer, New York, 1989.

    Google Scholar 

  8. K. ERIKSSON AND S. LINUSSON, The size of Fulton’s essential set, Sem. Lothar. Combin., 34 (1995), pp. Art. B341, approx. 19 pages (electronic).

    MathSciNet  Google Scholar 

  9. K. ERIKSSON AND S. LINUSSON, A combinatorial theory of higher-dimensional permutation array, Adv. in Appl. Math. 25 (2000), no. 2, 194–211.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. ERIKSSON AND S. LINUSSON, A decomposition of Fl(n)d indexed by permutation arrays, Adv. in Appl. Math. 25 (2000), no. 2, 212–227.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. FULTON, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65 (1991), pp. 381–420.

    Article  MathSciNet  Google Scholar 

  12. W. FULTON, Young tableaux, with Applications to Representation Theory and Geometry, London Math. Soc. Student Texts 35, Cambridge U.P., Cambridge, 1997.

    Google Scholar 

  13. N. GONCIULEA AND V. LAKSHMIBAI, Flag varieties, Hermann-Actualities Mathématiques, 2001.

    Google Scholar 

  14. J. HARRIS, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. HARTSHORNE, Algebraic Geometry, GTM 52, Springer-Verlag, New York-Heidelberg, 1977.

    MATH  Google Scholar 

  16. C. JORDAN, Traite des Substitutions, Gauthier-Villars, Paris, 1870.

    Google Scholar 

  17. S. KLEIMAN, Intersection theory and enumerative geometry: a decade in review, in Algebraic geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 2, 321–370, Amer. Math. Soc, Providence, RI, 1987.

    Google Scholar 

  18. A. KNUTSON, Descent-cycling in Schubert calculus, Experiment. Math., 10 (2001), no. 3, 345–353.

    MATH  MathSciNet  Google Scholar 

  19. A. KNUTSON AND T. TAO, Honeycombs and sums of Hermitian matrices, Notices Amer. Math. Soc, 48 (2001), 175–186.

    MATH  MathSciNet  Google Scholar 

  20. S. KUMAR, Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Math., 204, Birkhäuser, Boston, 2002.

    Google Scholar 

  21. S. LANG, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  22. LASCOUX, A. AND M.-P. SCHÜTZENBERGER, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450.

    MATH  Google Scholar 

  23. I.G. MACDONALD, Notes on Schubert Polynomials, Publ. du LACIM Vol. 6, Université du Québec à Montréal, Montreal, 1991

    Google Scholar 

  24. P. MAGYAR, Bruhat order for two flags and a Line, Journal of Algebraic Combinatorics, 21 (2005).

    Google Scholar 

  25. P. MAGYAR AND W. VAN DER KALLEN, The Space of triangles, vanishing theorems, and combinatorics, Journal of Algebra, 222 (1999), 17–50.

    Article  MATH  MathSciNet  Google Scholar 

  26. YU. MANIN, Cubic forms: Algebra, Geometry, Arithmetic, North-Holland, Amsterdam, 1974.

    MATH  Google Scholar 

  27. L. MANIVEL, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, J. Swallow trans. SMF/AMS Texts and Monographs, Vol. 6, AMS, Providence RI, 2001.

    MATH  Google Scholar 

  28. N. MNÈV, Varieties of combinatorial types of projective configurations and convex polyhedra, Dolk. Akad. Nauk SSSR, 283 (6) (1985), 1312–1314.

    Google Scholar 

  29. N. MNÈV, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, in Topology and geometry — Rohlin seminar, Lect. Notes in Math. 1346, Springer-Verlag, Berlin, 1988, 527–543.

    Chapter  Google Scholar 

  30. K. PURBHOO, Vanishing and nonvanishing criteria in Schubert calculus, International Math. Res. Not., Art. ID 24590 (2006), pp.1–38.

    Article  Google Scholar 

  31. J.-P. SERRE, Lectures on the Mordell-Weil theorem, M. Waldschmidt trans. F. Viehweg, Braunschweig, 1989.

    MATH  Google Scholar 

  32. B. SHAPIRO, M. SHAPIRO, AND A. VAINSHTEIN, On combinatorics and topology of pairwise intersections of Schubert cells in SL n /B, in The Amol’d-Gelfand Mathematical Seminars, 397–437, Birkhäuser, Boston, 1997.

    Google Scholar 

  33. R. VAKIL, A geometric Littlewood-Richardson rule, with an appendix joint with A. Kmitson, Ann. of Math. (2) 164 (2006), no. 2, 371–421.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. VAKIL, Schubert induction, Ann. of Math. (2) 164 (2006), no. 2, 489–512.

    Article  MATH  MathSciNet  Google Scholar 

  35. R. VAKIL, Murphy’s Law in algebraic geometry: Badly-behaved deformation spaces, Invent. Math. 164 (2006), no. 3, 569–590.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. WEBER, Lehrbuch der Algebra, Chelsea Publ. Co., New York, 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Billey, S., Vakil, R. (2008). Intersections of Schubert varieties and other permutation array schemes. In: Dickenstein, A., Schreyer, FO., Sommese, A.J. (eds) Algorithms in Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75155-9_3

Download citation

Publish with us

Policies and ethics