Skip to main content

Cystic Fibrosis—Coping with Resistance

  • Chapter
Antibiotic Policies: Fighting Resistance

Abstract

Reduced volume of the epithelial lining fluid and viscous mucus leading to dysfunction of the mucociliary escalator are the consequences of a nonfunctional CFTR chloride channel in the lungs of patients with cystic fibrosis (CF). This impairment of the noninflammatory defense mechanism of the respiratory tract leads to early recruitment of the inflammatory defense mechanism, e.g., polymorphonuclear leukocytes (PMN) and antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso A, Campanario E, Martinez JL. 1999. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145:2857–2862.

    CAS  PubMed  Google Scholar 

  • Anwar H, Costerton JW. 1990. Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrob Agents Chemother 34:1666–1671.

    CAS  PubMed  Google Scholar 

  • Anwar H, Strap JL, Costerton JW. 1992. Establishment of aging biofilms: Possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351.

    CAS  PubMed  Google Scholar 

  • Babini GS, Livermore DM. 2000. Effect of conalbumin on the activity of Syn 2190, a 1,5 dihydroxy-4-pyridon monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 45:105–109.

    Article  CAS  PubMed  Google Scholar 

  • Bagge N, Ciofu O, Hentzer M, Campbell JI, Givskov M, Høiby N. 2002. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46:3406–3411.

    Article  CAS  PubMed  Google Scholar 

  • Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N. 2004a. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48:1168–1174.

    Article  CAS  PubMed  Google Scholar 

  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Høiby N. 2004b. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187.

    Article  CAS  PubMed  Google Scholar 

  • Ballestero S, Escobar H, Villaverde R, Elia M, Ojeda-Vargas M, Baquero F. 1993. Continuous monitoring of antimicrobial resistance in cystic fibrosis patients, in Escobar H, Baquero F, Suarez L (eds). Clinical Ecology of Cystic Fibrosis. Madrid, Elsevier Science Publishers, pp 63–72.

    Google Scholar 

  • Barclay ML, Begg EJ, Chambers ST, Thornley PE, Pattemore PK, Grimwood K. 1996. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother 37:1155–1164.

    Article  CAS  PubMed  Google Scholar 

  • Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Høiby N, Givskov M. 2005. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383.

    Article  CAS  PubMed  Google Scholar 

  • Blázquez J, Gómez-Gómez J M, Oliver A, Juaz C, kapur V, Martins. 2006. PBP3 inhibition elicits adapture responses in Pseudomomas arruginosa Mol. Microbiol 62:84–99.

    Article  PubMed  Google Scholar 

  • Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. 2004. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664.

    Article  CAS  PubMed  Google Scholar 

  • Bradford PA. 2001. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951, table of contents.

    Article  CAS  PubMed  Google Scholar 

  • Chopra I, O’Neill AJ, Miller K. 2003. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 6:137–145.

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O. 2003. Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS Suppl:1–47.

    Google Scholar 

  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. 2000. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13.

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Fussing V, Bagge N, Koch C, Høiby N. 2001. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: Antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother 48:391–396.

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Bagge N, Høiby N. 2002. Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS 110:881–891.

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Riis B, Pressler T, Poulsen HE, Høiby N. 2005. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282.

    Article  CAS  PubMed  Google Scholar 

  • Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S. 2001. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob Agents Chemother 45:2807–2812.

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284:1318–1322.

    Article  CAS  PubMed  Google Scholar 

  • Davies D, Parsek M, Pearson J, Iglewski B, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of bacterial biofilms. Science 280:295–298.

    Article  CAS  PubMed  Google Scholar 

  • De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG. 2001. Multidrug efflux pumps: Expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45:1761–1770.

    Article  PubMed  Google Scholar 

  • Döring G, Høiby N. 2004. Early intervention and prevention of lung disease in cystic fibrosis: A European consensus. J Cyst Fibros 3:67–91.

    Article  PubMed  Google Scholar 

  • Döring G, Goldstein W, Botzenhart K, Kharazmi A, Schiøtz PO, Høiby N, Dasgupta M. 1986. Elastase from polymorphonuclear leucocytes: A regulatory enzyme in immune complex disease. Clin Exp Immunol 64:597–605.

    PubMed  Google Scholar 

  • Drenkard E, Ausubel FM. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743.

    Article  CAS  PubMed  Google Scholar 

  • Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392.

    CAS  PubMed  Google Scholar 

  • Equi A, Balfour-Lynn IM, Bush A, Rosenthal M. 2002. Long term azithromycin in children with cystic fibrosis: A randomised, placebo-controlled crossover trial. Lancet 360:978–984.

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen B, Koch C, Høiby N. 1999. Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974–1995). Pediatr Pulmonol 28:159–166.

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W. 1995. DNA Repair and Mutagenesis. Washington, DC, ASM Press.

    Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P. 2005. Survival strategies of infectious biofilms. Trends Microbiol 13:34–40.

    Article  CAS  PubMed  Google Scholar 

  • Geisenberger O, Givskov M, Riedel K, Høiby N, Tummler B, Eberl L. 2000. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiol Lett 184:273–278.

    CAS  PubMed  Google Scholar 

  • Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Høiby N. 1990. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother 26:247–259.

    Article  CAS  PubMed  Google Scholar 

  • Giwercman B, Jensen ET, Høiby N, Kharazmi A, Costerton JW. 1991. Induction of betalactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother 35:1008–1010.

    CAS  PubMed  Google Scholar 

  • Giwercman B, Meyer C, Lambert PA, Reinert C, Høiby N. 1992. High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother 36:71–76.

    CAS  PubMed  Google Scholar 

  • Good L, Nielsen PE. 1998. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16:355–358.

    Article  CAS  PubMed  Google Scholar 

  • Haagensen J.A, Klausen M, Ernst R, Miller S.I, Folkesson A, Tolker Nielsen T, Malin S. 2007. Differentiation and distribution of Colistin and Sodium Dodecyl Sulfate Tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacterial 189:28–37.

    Article  CAS  Google Scholar 

  • Hancock RE, Raffle VJ, Nicas TI. 1981. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 19:777–785.

    CAS  PubMed  Google Scholar 

  • Hentzer M, Eberl L, Givskov M. 2005. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: Anaerobic respiration and iron limitation. Biofilms 2:37–61.

    Article  Google Scholar 

  • Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C. 2005. Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43:5085–5090.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. 2005. Amino-glycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175.

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O, Kharazmi A. 2001. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35.

    Article  PubMed  Google Scholar 

  • Høiby N, Frederiksen B, Pressler T. 2005. Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4 Suppl 2:49–54.

    Article  Google Scholar 

  • Hull J, Vervaart P, Grimwood K, Phelan P. 1997. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 52:557–560.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe A, Bush A. 2001. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31:464–473.

    Article  CAS  PubMed  Google Scholar 

  • Jalal S, Ciofu O, Høiby N, Gotoh N, Wretlind B. 2000. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712.

    Article  CAS  PubMed  Google Scholar 

  • Jensen T, Pedersen SS, Garne S, Heilmann C, Høiby N, Koch C. 1987. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 19:831–838.

    Article  CAS  PubMed  Google Scholar 

  • Jensen T, Kharazmi A, Schiøtz PO, Nielsen H, Stenvang Pedersen S, Stafanger G, Koch C, Høiby N. 1988. Effect of oral N-acetylcysteine administration on human blood neutrophil and monocyte function. APMIS 96:62–67.

    Article  CAS  PubMed  Google Scholar 

  • Johansen HK, Ciofu O, Koch C, Høiby N. 2003. Emergence and elimination of colistin resistant Pseudomonas aeruginosa in chronically infected Danish cystic fibrosis patients. In: 26th European Cystic Fibrosis Conference, Belfast, Northen Ireland.

    Google Scholar 

  • Karlowsky JA, Saunders MH, Harding GA, Hoban DJ, Zhanel GG. 1996. In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40:1387–1393.

    CAS  PubMed  Google Scholar 

  • Katsorchis T, Legakis NJ, Shearer B, Genmmata V, Pataryas H. 1985. Outer surface changes of Pseudomonas aeruginosa in relation to resistance to gentamicin and carbenicillin. J Med Microbiol 19:375–381.

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Hjelt K, Pedersen SS, Jensen ET, Jensen T, Lanng S, Valerius NH, Pedersen M, Høiby N. 1991. Retrospective clinical study of hypersensitivity reactions to aztreonam and six other beta-lactam antibiotics in cystic fibrosis patients receiving multiple treatment courses. Rev Infect Dis 13 Suppl 7:S608–611.

    PubMed  Google Scholar 

  • Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. 2005. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:565–570.

    Article  CAS  PubMed  Google Scholar 

  • Lagrange-Puget M, Durieu I, Ecochard R, Abbas-Chorfa F, Drai J, Steghens JP, Pacheco Y, Vital-Durand D, Bellon G. 2004. Longitudinal study of oxidative status in 312 cystic fibrosis patients in stable state and during bronchial exacerbation. Pediatr Pulmonol 38:43–49.

    Article  PubMed  Google Scholar 

  • LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211.

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Zhang L, Srikumar R, Poole K. 1998. Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:399–403.

    CAS  PubMed  Google Scholar 

  • Macfarlane EL, Kwasnicka A, Hancock RE. 2000. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146 (Pt 10):2543–2554.

    CAS  PubMed  Google Scholar 

  • Macia MD, Borrell N, Segura M, Gomez C, Perez JL, Oliver A. 2006. Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:975–983.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod DL, Nelson LE, Shawar RM, Lin BB, Lockwood LG, Dirk JE, Miller GH, Burns JL, Garber RL. 2000. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis 181:1180–1184.

    Article  CAS  PubMed  Google Scholar 

  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310.

    Article  CAS  PubMed  Google Scholar 

  • McPhee JB, Lewenza S, Hancock RE. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50:205–217.

    Article  CAS  PubMed  Google Scholar 

  • Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. 2004. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631.

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz SM, Burns JL, Nguyen CD, Høiby N, Ernst RK, Miller SI. 2000. Polymyxin resistance and lipid A structure of Pseudomonas aeruginosa isolated from colistin-treated and colistin-naive cystic fibrosis patients. Pediatr Pulmonol Suppl 20:272.

    Google Scholar 

  • Moskowitz SM, Foster JM, Emerson J, Burns JL. 2004. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922.

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Ono T, Viducic D, Kayama S, Mori M, Hirota K, Nemoto K, Miyake Y. 2005. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 242:161–167.

    Article  CAS  PubMed  Google Scholar 

  • Nagino K, Kobayashi H. 1997. Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa. Clin Microbiol Infect 3:432–439.

    Article  CAS  PubMed  Google Scholar 

  • Nakae T, Nakajima A, Ono T, Saito K, Yoneyama H. 1999. Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. Antimicrob Agents Chemother 43:1301–1303.

    CAS  PubMed  Google Scholar 

  • Nichols WW, Evans MJ, Slack MP, Walmsley HL. 1989. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 135:1291–1303.

    CAS  PubMed  Google Scholar 

  • Nickel JC, Ruseska I, Wright JB, Costerton JW. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624.

    CAS  PubMed  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F, Blazquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254.

    Article  CAS  PubMed  Google Scholar 

  • Oliver A, Levin BR, Juan C, Baquero F, Blazquez J. 2004. Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: Implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48:4226–4233.

    Article  CAS  PubMed  Google Scholar 

  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SS, Høiby N, Espersen F, Koch C. 1992. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:6–13.

    Article  CAS  PubMed  Google Scholar 

  • Powers RA, Morandi F, Shoichet BK. 2002. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 10:1013–1023.

    Article  CAS  PubMed  Google Scholar 

  • Radman M, Taddei F, Matic I. 2000. Evolution-driving genes. Res Microbiol 151:91–95.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey BW, Pepe MS, Quan JM, Otto KL, Montgomery AB, Williams-Warren J, Vasiljev KM, Borowitz D, Bowman CM, Marshall BC, Marshall S, Smith AL. 1999. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 340:23–30.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M. 2006. Quorum sensing inhibitors: A bargain of effects. Microbiology 152:895–904.

    Article  CAS  PubMed  Google Scholar 

  • Roum JH, Borok Z, McElvaney NG, Grimes GJ, Bokser AD, Buhl R, Crystal RG. 1999. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 87:438–443.

    CAS  PubMed  Google Scholar 

  • Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW 3rd. 2003. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 290:1749–1756.

    Article  CAS  PubMed  Google Scholar 

  • Sanders CC, Gates ML, Sanders WE Jr. 1988. Heterogeneity of class I beta-lactamase expression in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 32:1893–1895.

    CAS  PubMed  Google Scholar 

  • Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, Tanaka SK. 1999. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 43:2877–2880.

    CAS  PubMed  Google Scholar 

  • Shearer BG, Legakis NJ. 1985. Pseudomonas aeruginosa: Evidence for the involvement of lipopolysaccharide in determining outer membrane permeability to carbenicillin and gentamicin. J Infect Dis 152:351–355.

    CAS  PubMed  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764.

    Article  CAS  PubMed  Google Scholar 

  • Stafanger G, Koch C. 1989. N-acetylcysteine in cystic fibrosis and Pseudomonas aeruginosa infection: Clinical score, spirometry and ciliary motility. Eur Respir J 2:234–237.

    CAS  PubMed  Google Scholar 

  • Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B. 1997. Role of mutator alleles in adaptive evolution. Nature 387:700–702.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Yomoda S, Ushijima Y, Kobayashi I, Inoue M. 1995. Ofloxacin, norfloxacin and ceftazidime increase the production of alginate and promote the formation of biofilm of Pseudomonas aeruginosa in vitro. J Antimicrob Chemother 36:743–745.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka G, Shigeta M, Komatsuzawa H, Sugai M, Suginaka H, Usui T. 1999. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: Beta-lactams and fluoroquinolones. Chemotherapy 45:28–36.

    Article  CAS  PubMed  Google Scholar 

  • Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C. 2001. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933.

    Article  CAS  PubMed  Google Scholar 

  • Thomassen MJ, Demko CA, Boxerbaum B, Stern RC, Kuchenbrod PJ. 1979. Multiple of isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J Infect Dis 140:873–880.

    CAS  PubMed  Google Scholar 

  • Tondi D, Morandi F, Bonnet R, Costi MP, Shoichet BK. 2005. Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 127:4632–4639.

    Article  CAS  PubMed  Google Scholar 

  • Valerius NH, Koch C, Høiby N. 1991. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338:725–726.

    Article  CAS  PubMed  Google Scholar 

  • Vogne C, Aires JR, Bailly C, Hocquet D, Plesiat P. 2004. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:1676–1680.

    Article  CAS  PubMed  Google Scholar 

  • Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-beta-lactamases: The quiet before the storm? Clin Microbiol Rev 18:306–325.

    Article  CAS  PubMed  Google Scholar 

  • Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323.

    Article  CAS  PubMed  Google Scholar 

  • Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. 2002. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: A randomised trial. Thorax 57:212–216.

    Article  CAS  PubMed  Google Scholar 

  • Wong K, Roberts MC, Owens L, Fife M, Smith AL. 1984. Selective media for the quantitation of bacteria in cystic fibrosis sputum. J Med Microbiol 17:113–119.

    Article  CAS  PubMed  Google Scholar 

  • Wood LG, Fitzgerald DA, Gibson PG, Cooper DM, Collins CE, Garg ML. 2001. Oxidative stress in cystic fibrosis: Dietary and metabolic factors. J Am Coll Nutr 20:157–165.

    CAS  PubMed  Google Scholar 

  • Wood LF, Leech AJ, Ohman DE. 2006. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426.

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Doi Y, Yokoyama K, Yagi T, Kurokawa H, Shibata N, Shibayama K, Kato H, Arakawa Y. 2004. Genetic environments of the rmtA gene in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 48:2069–2074.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ciofu, O., Høiby, N. (2008). Cystic Fibrosis—Coping with Resistance. In: Gould, I.M., van der Meer, J.W. (eds) Antibiotic Policies: Fighting Resistance. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70841-6_10

Download citation

Publish with us

Policies and ethics