Skip to main content

Characterization of Chromosomal Translocations in Mouse Models of Hematological Malignancies Using Spectral Karyotyping, FISH, and Immunocytochemistry

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

Model systems for cancer have long been used to study patterns, mechanisms, and consequences of chromosomal translocations. The first consistent translocation observed in mouse models, however, was the identification of recurrent exchanges between murine plasma cell tumors, which eventually led to the paradigm of translocation-induced activation of oncogenes in hematologic malignancies. In this chapter, we first provide a brief historical overview on the use of mouse models, then elucidate how technological development of cytogenetic techniques (chromosome banding) and molecular cytogenetic techniques (FISH and SKY) helped to arrive at a comprehensive view of chromosomal aberrations and patterns of aneuploidy. We provide an overview of mouse models analyzed with molecular cytogenetic techniques, and, lastly, describe how critical these advanced techniques have been to understand the mechanisms of the complex interplay of DNA double strand breaks and their repair for the maintenance of genomic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34:369–376

    Article  PubMed  CAS  Google Scholar 

  • Barlow C, Hirotsune S, Paylor R et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171

    Article  PubMed  CAS  Google Scholar 

  • Barnes DW, Ford CE, Gray SM, Loutit JF (1959) Spontaneous and induced changes in cell populations in heavily irradiated mice. In: Progress in Nuclear Biology – Biological Sciences Elsevier, Oxford Series 6:vol 2:1–10

    Google Scholar 

  • Bayreuther K (1960) Chromosomes in primary neoplastic growth Nature 186:6–9

    CAS  Google Scholar 

  • Berger R, Bernard OA (2007) Jumping translocations. Genes Chromosomes Cancer 46:717–723

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Haber JE (1998) Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150:1037–1047

    PubMed  CAS  Google Scholar 

  • Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Gustav Fischer, Jena

    Google Scholar 

  • Boveri T (1929) The origin of malignant tumors. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bransteitter R, Pham P, Scharff MD, Goodman MF (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 100:4102–4107

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    Article  PubMed  CAS  Google Scholar 

  • Caspersson T, Zech L, Johansson C, Modest EJ (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30:215–227

    Article  PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Bhandoola A, Difilippantonio MJ et al (2000) Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Coleman AE, Schrock E, Weaver Z et al (1997) Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res 57:4585–4592

    PubMed  CAS  Google Scholar 

  • Coleman AE, Forest ST, McNeil N, Kovalchuk AL, Ried T, Janz S (1999a) Cytogenetic analysis of the bipotential murine pre-B cell lymphoma, P388, and its derivative macrophage-like tumor, P388D1, using SKY and CGH. Leukemia 13:1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Coleman AE, Kovalchuk AL, Janz S, Palini A, Ried T (1999b) Jumping translocation breakpoint regions lead to amplification of rearranged Myc. Blood 93:4442–4444

    PubMed  CAS  Google Scholar 

  • Coleman AE, Ried T, Janz S (1999c) Recurrent non-reciprocal translocations of chromosome 5 in primary T(12;15)-positive BALB/c plasmacytomas. Curr Top Microbiol Immunol 246:175–180

    Article  PubMed  CAS  Google Scholar 

  • Collard JG, Philippus E, Tulp A, Lebo RV, Gray JW (1984) Separation and analysis of human chromosomes by combined velocity sedimentation and flow sorting applying single- and dual-laser flow cytometry. Cytometry 5:9–19

    Article  PubMed  CAS  Google Scholar 

  • Crabtree JS, Scacheri PC, Ward JM et al (2003) Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol 23:6075–6085

    Article  PubMed  CAS  Google Scholar 

  • Crews S, Barth R, Hood L, Prehn J, Calame K (1982) Mouse c-myc oncogene is located on chromosome 15 and translocated to chromosome 12 in plasmacytomas. Science 218:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Danska JS, Guidos CJ (1997) Essential and perilous: V(D)J recombination and DNA damage checkpoints in lymphocyte precursors. Semin Immunol 9:199–206

    Article  PubMed  CAS  Google Scholar 

  • Dev VG, Grewal MS, Miller DA, Kouri RE, Hutton JJ, Miller OJ (1971) The quinacrine fluorescence karyotype of Mus musculus and demonstration of strain differences in secondary constrictions. Cytogenetics 10:436–451

    Article  PubMed  CAS  Google Scholar 

  • Di Noia J, Neuberger MS (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419:43–48

    Article  PubMed  Google Scholar 

  • Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  Google Scholar 

  • Dickerson SK, Market E, Besmer E, Papavasiliou FN (2003) AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 197:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Difilippantonio MJ, Zhu J, Chen HT et al (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510–514

    Article  PubMed  CAS  Google Scholar 

  • Difilippantonio MJ, Petersen S, Chen HT et al (2002) Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 196:469–480

    Article  PubMed  CAS  Google Scholar 

  • Dorritie K, Montagna C, Difilippantonio MJ, Ried T (2004) Advanced molecular cytogenetics in human and mouse. Expert Rev Mol Diagn 4:663–676

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–4817

    Article  PubMed  CAS  Google Scholar 

  • Felix K, Kovalchuk AL, Park SS et al (2001) Inducible mutagenesis in TEPC 2372, a mouse plasmacytoma cell line that harbors the transgenic shuttle vector lambdaLIZ. Mutat Res 473:121–136

    Article  PubMed  CAS  Google Scholar 

  • Fichdzhian BC, Pogosiants EE (1963) Chromosomal characteristics of 3 transplantable leukemias in rats. Vopr Onkol 21:47–51

    PubMed  CAS  Google Scholar 

  • Ford CE, Hamerton JL, Mole RH (1958) Chromosomal changes in primary and transplanted reticular neoplasms of the mouse. J Cell Physiol Suppl 52:235–262, discussion 62–9

    PubMed  CAS  Google Scholar 

  • Gaiser T, Berroa-Garcia L, Kemmerling R, Dutta A, Ried T, Heselmeyer-Haddad K (2010) Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue. Anal Cell Pathol (Amst) 33:105–112

    CAS  Google Scholar 

  • Gee CJ, Harris H (1979) Tumorigenicity of cells transformed by Simian virus 40 and of hybrids between such cells and normal diploid cells. J Cell Sci 36:223–240

    PubMed  CAS  Google Scholar 

  • Goff SP, D’Eustachio P, Ruddle FH, Baltimore D (1982) Chromosomal assignment of the endogenous proto-oncogene C-abl. Science 218:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Hansemann D (1890) Über asymmetrische Zellteilung in Epithelkrebsen und deren biologische Bedeutung. Virchows ArchPathol 119:299–326

    Article  Google Scholar 

  • Harris H (1995) The cells of the body. A history of somatic cell genetics. Cold Spring Harbor Press, Plainview, NY

    Google Scholar 

  • Hashmi S, Allderdice PW, Klein G, Miller OJ (1974) Chromosomal heterogeneity in the RAG and MSWBS mouse tumor cell lines. Cancer Res 34:79–88

    PubMed  CAS  Google Scholar 

  • Hauschka TS, Levan A (1958) Cytologic and functional characterization of single cell clones isolated from the Krebs-2 and Ehrlich ascites tumors. J Natl Cancer Inst 21:77–135

    PubMed  CAS  Google Scholar 

  • Heim S, Mitelman F (2009) Cancer Cytogenetics. John Wiley & Sons, Hoboken

    Google Scholar 

  • Holland MS, Mackenzie CD, Bull RW, Silva RF (1996) A comparative study of histological conditions suitable for both immunofluorescence and in situ hybridization in the detection of Herpesvirus and its antigens in chicken tissues. J Histochem Cytochem 44:259–265

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC (1979) Human and mammalian cytogenetics. An historical perspective. Springer Verlag, New York

    Book  Google Scholar 

  • Imai K, Slupphaug G, Lee WI et al (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Klein G (1951) Comparative studies of mouse tumors with respect to their capacity for growth as “ascites tumors” and their average nucleic acid content per cell. Exp Cell Res 2:518–573

    Article  CAS  Google Scholar 

  • Kovalchuk AL, Esa A, Coleman AE et al (2001) Translocation remodeling in the primary BALB/c plasmacytoma TEPC 3610. Genes Chromosomes Cancer 30:283–291

    Article  PubMed  CAS  Google Scholar 

  • Levan A, Biesele JJ (1958) Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells. Ann N Y Acad Sci 71:1022–1053

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang L, Desiderio S (2009) Temporal and spatial regulation of V(D)J recombination: interactions of extrinsic factors with the RAG complex. Adv Exp Med Biol 650:157–165

    Article  PubMed  CAS  Google Scholar 

  • Liyanage M, Coleman A, du Manoir S et al (1996) Nat Genet 14(3):312–315

    PubMed  CAS  Google Scholar 

  • Liyanage M, Weaver Z, Barlow C et al (2000) Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96:1940–1946

    PubMed  CAS  Google Scholar 

  • Makino S (1951) Some observations on the chromosomes in the Yoshida sarcoma cells based on the homoplastic and heteroplastic transplantations; a preliminary report. Gann 42:87–90

    PubMed  CAS  Google Scholar 

  • Makino S (1952) Cytological studies on cancer. III. The characteristics and individuality of chromosomes in tumor cells of the Yoshida sarcoma which contribute to the growth of the tumor. Gan 43:17–34

    PubMed  CAS  Google Scholar 

  • McMichael H, Wagner JE, Nowell PC, Hungerford DA (1963) Chromosome Studies of Virus-Induced Rabbit Papillomas and Derived Primary Carcinomas. J Natl Cancer Inst 31:1197–1215

    PubMed  CAS  Google Scholar 

  • McNeil N, Kim JS, Ried T, Janz S (2005) Extraosseous IL-6 transgenic mouse plasmacytoma sometimes lacks Myc-activating chromosomal translocation. Genes Chromosomes Cancer 43:137–146

    Article  PubMed  CAS  Google Scholar 

  • Meltzer PS, Guan XY, Trent JM (1993) Telomere capture stabilizes chromosome breakage. Nat Genet 4:252–255

    Article  PubMed  CAS  Google Scholar 

  • Mialhe A, Cassanelli S, Louis J, Seigneurin D (1996) Methods for simultaneous interphase in situ hybridization and nuclear antigen immunocytochemistry in T47-D cells. J Histochem Cytochem 44:193–197

    Article  PubMed  CAS  Google Scholar 

  • Miller JF (1961) Etiology and pathogenesis of mouse leukemia. Adv Cancer Res 6:291–368

    Article  PubMed  CAS  Google Scholar 

  • Miller OJ, Miller DA, Kouri RE et al (1971) Identification of the mouse karyotype by quinacrine fluorescence, and tentative assignment of seven linkage groups. Proc Natl Acad Sci USA 68:1530–1533

    Article  PubMed  CAS  Google Scholar 

  • Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T (2002) Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene 21:890–898

    Article  PubMed  CAS  Google Scholar 

  • Montagna C, Lyu MS, Hunter K et al (2003) The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 63:2179–2187

    PubMed  CAS  Google Scholar 

  • Morrow DM, Connelly C, Hieter P (1997) “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382

    PubMed  CAS  Google Scholar 

  • Nesbitt M, Francke U (1971) Linkage groups II and XII of the mouse: cytological localization by fluorochrome staining. Science 174:60–62

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt MN, Francke U (1973) A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41:145–158

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC, Hungerford DA (1962) The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 132:65–66

    Article  Google Scholar 

  • Nowell PC, Hungerford DA (1964) Chromosome changes following irradiation in mammals. Ann N Y Acad Sci 114:252–258

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Babonits M, Wiener F, Spira J, Klein G, Potter M (1979) Nonrandom chromosome changes involving the Ig gene-carrying chromosomes 12 and 6 in pristane-induced mouse plasmacytomas. Cell 18:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T (2006) Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc 1:3129–3142

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Earnshaw WC, Choo KH, Shaffer LG (1995) Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum Mol Genet 4:289–294

    Article  PubMed  CAS  Google Scholar 

  • Painter TS (1926) The chromosomes of rodents. Science 64:336

    Article  PubMed  CAS  Google Scholar 

  • Park SS, Kim JS, Tessarollo L et al (2005) Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice. Cancer Res 65:1306–1315

    Article  PubMed  CAS  Google Scholar 

  • Petersen S, Casellas R, Reina-San-Martin B et al (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414:660–665

    Article  PubMed  CAS  Google Scholar 

  • Petersen-Mahrt SK, Harris RS, Neuberger MS (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418:99–103

    Article  PubMed  CAS  Google Scholar 

  • Petiniot LK, Weaver Z, Vacchio M et al (2002) RAG-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice. Mol Cell Biol 22:3174–3177

    Article  PubMed  CAS  Google Scholar 

  • Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107

    Article  PubMed  CAS  Google Scholar 

  • Potter M (2007) The early history of plasma cell tumors in mice, 1954–1976. Adv Cancer Res 98:17–51

    Article  PubMed  CAS  Google Scholar 

  • Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4:452–456

    Article  PubMed  CAS  Google Scholar 

  • Ried T (2009) Homage to Theodor Boveri (1862–1915): Boveri’s theory of cancer as a disease of the chromosomes, and the landscape of genomic imbalances in human carcinomas. Environ Mol Mutagen 50(8):593–601

    Article  PubMed  CAS  Google Scholar 

  • Ried T, Heselmeyer-Haddad K, Blegen H, Schrock E, Auer G (1999) Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer 25:195–204

    Article  PubMed  CAS  Google Scholar 

  • Rockwood LD, Torrey TA, Kim JS et al (2002) Genomic instability in mouse Burkitt lymphoma is dominated by illegitimate genetic recombinations, not point mutations. Oncogene 21:7235–7240

    Article  PubMed  CAS  Google Scholar 

  • Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogeneous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  PubMed  CAS  Google Scholar 

  • Russell SW, Francke U, Buettner L, Cochrane CG (1974) Modes of growth and spread of a transplantable, virus-producing murine (Moloney) sarcoma: karyotypic analyses. J Natl Cancer Inst 53:801–806

    PubMed  CAS  Google Scholar 

  • Schaeffer AJ, Nguyen M, Liem A et al (2004) E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res 64:538–546

    Article  PubMed  CAS  Google Scholar 

  • Schnedl W (1971) The karyotype of the mouse Chromosoma 35:111–116

    Article  CAS  Google Scholar 

  • Schröck E, du Manoir S, Veldman T et al (1996) Science 26;273(5274):494–497

    Article  CAS  Google Scholar 

  • Shepard JS, Wurster-Hill DH, Pettengill OS, Sorenson GD (1974) Giemsa-banded chromosomes of mouse myeloma in relationship to oncogenicity. Cytogenet Cell Genet 13:279–309

    Article  PubMed  CAS  Google Scholar 

  • Speel EJ, Ramaekers FC, Hopman AH (1995) Cytochemical detection systems for in situ hybridization, and the combination with immunocytochemistry, ‘who is still afraid of red, green and blue?’. Histochem J 27:833–858

    PubMed  CAS  Google Scholar 

  • Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Montagna C, Leighton X et al (2003) Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/−) mouse. Proc Natl Acad Sci USA 100:14287–14292

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelear AH, Tunnacliffe A et al (1992a) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow sorted chromosomes. Genes ChromosomCancer 4:267–3

    Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Norednskjöld M, Ponder BAJ, Tunnacliffe A (1992b) Degenerate oligonucleotide-primed PCR (DOP-PCR): general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  PubMed  CAS  Google Scholar 

  • Tjio JH, Levan A (1956) The chromosome number in man. Hereditas 42:1–6

    Article  Google Scholar 

  • Toledo F, Buttin G, Debatisse M (1993) The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Curr Biol 3:255–264

    Article  PubMed  CAS  Google Scholar 

  • Vrba M, Donner L (1964) Chromosome numbers and karyotypes of two rat tumours induced by Rous sarcoma virus in vitro. Folia Biol (Praha) 10:373–380

    CAS  Google Scholar 

  • Weaver ZA, McCormack SJ, Liyanage M et al (1999) A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 25:251–260

    Article  PubMed  CAS  Google Scholar 

  • Weaver Z, Montagna C, Xu X et al (2002) Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21:5097–5107

    Article  PubMed  CAS  Google Scholar 

  • Wiener F, Babonits M, Spira J, Klein G, Potter M (1980) Cytogenetic studies on IgA/lambda-producing murine plasmacytomas: regular occurrence of a T(12;15) translocation. Somatic Cell Genet 6:731–738

    Article  PubMed  CAS  Google Scholar 

  • Winge O (1930) Zytologische Untersuchungen über die Natur maligner Tumoren. II Teerkarzinome bei Mäusen. Z Zellforsch Mikrosk Anat 10:397–423

    Article  Google Scholar 

  • Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM (2008) Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28:1713–1723

    Article  PubMed  CAS  Google Scholar 

  • Yosida TH (1952) Cytological studies on cancer. V. Heteroplastic transplantations of the Yoshida sarcoma, with special regard to the behaviour of tumor cells. Gan 43:35–43

    PubMed  CAS  Google Scholar 

  • Zech L, Evans EP, Ford CE, Gropp A (1972) Banding patterns in mitotic chromosomes of tobacco mouse. Exp Cell Res 70:263–268

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Difilippantonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ried, T., Difilippantonio, M.J. (2012). Characterization of Chromosomal Translocations in Mouse Models of Hematological Malignancies Using Spectral Karyotyping, FISH, and Immunocytochemistry. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_9

Download citation

Publish with us

Policies and ethics