Skip to main content

Interaction of the Androgen Receptor Ligand-Binding Domain with the N-Terminal Domain and with Coactivators

  • Chapter
  • First Online:
Androgen Action in Prostate Cancer

Abstract

The ligand-binding domain of the androgen receptor not only binds ligands, but also contains a ligand-induced protein interaction surface, the cofactor-binding groove. The groove interacts with short amphipatic α-helices in cofactors composed of an FxxLF motif, or with LxxLL motifs at a lower affinity. Moreover, the cofactor-binding groove interacts with an FxxLF motif in the N-terminal domain of the androgen receptor. The groove is able to adapt its shape in complexes with interacting peptides. In the peptide motifs, an F at +1 seems essential for high-affinity binding. L+4 can be replaced by several other hydrophobic amino acid residues without losing activity. Although F at +5 has the highest activity, it can be substituted by tryptophane or tyrosine. Studies of the spatial and temporal distribution of the androgen receptor in the living cell indicates consecutive protein interactions, including intramolecular and intermolecular androgen receptor domain interactions and cofactor binding, depending on the cellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askew EB, Gampe RT, Stanley TB, Faggart JL, Wilson EM. (2007) Modulation of androgen receptor activation function AF2 by testosterone and dihydrotestosterone. J Biol Chem 282:25801–25816.

    Article  PubMed  CAS  Google Scholar 

  • Brooke GN, Parker MG, Bevan CL. (2008) Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Oncogene 27:2941–2950.

    Article  PubMed  CAS  Google Scholar 

  • Chang C-Y, Norris JD, Gron H, Paige LA, Hamilton PT, Kenan DJ, Fowlkes D, McDonnell DP. (1999) Dissection of the LxxLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors a and b. Mol Cell Biol 19:8226–8239.

    PubMed  CAS  Google Scholar 

  • Chang C-Y, Abdo J, Hartney T, McDonnell DP. (2005) Development of peptide antagonsists for the androgen receptor using combinatorial peptide phage display. Mol Endocrinol 19:2478–2490.

    Article  PubMed  CAS  Google Scholar 

  • Doesburg P, Kuil CW, Berrevoets CA, Steketee K, Faber PW, Mulder E, Brinkmann AO, Trapman J. (1997) Functional in vivo interaction between the amino-terminal transactivation domain and the ligand-binding domain of the androgen receptor. Biochemistry 36:1052–1064.

    Article  PubMed  CAS  Google Scholar 

  • Dubbink HJ, Hersmus R, Verma CS, van der Korput HAGM, Berrevoets CA, van Tol J, Ziel-van der Made ACJ, Brinkmann AO, Pike ACW, Trapman J. (2004) Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol Endocrinol 18:2132–2150.

    Article  PubMed  CAS  Google Scholar 

  • Dubbink HJ, Hersmus R, Pike ACW, Molier M, Brinkmann A, Jenster G, Trapman J. (2006) Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol Endocrinol 20:1742–1756.

    Article  PubMed  CAS  Google Scholar 

  • Estebanez-Perpina E, Moore JMR, Mar E, Delgado-Rodrigues E, Nguyen P, Baxter JD, Buehrer BM, Webb P, Fletterick RJ, Guy RK. (2005) The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J Biol Chem 280:8060–8068.

    Article  PubMed  CAS  Google Scholar 

  • Greschik H, Moras D. (2003) Structure–activity relationship of nuclear receptor-ligand interactions. Curr Top Med Chem 3:1573–1599.

    Article  PubMed  CAS  Google Scholar 

  • He B, Wilson EM. (2003) Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. Mol Cell Biol 23:2135–2150.

    Article  PubMed  CAS  Google Scholar 

  • He B, Kemppainen JA, Wilson EM. (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275:22986–22994.

    Article  PubMed  CAS  Google Scholar 

  • He B, Minges JT, Lee LW, Wilson EM. (2002) The FXXLF motif mediates androgen receptorspecific interactions with coregulators. J Biol Chem 277:10226–10235.

    Article  PubMed  CAS  Google Scholar 

  • He B, Gampe RT, Kole AJ, Hnat AT, Stanley TB, An G, Stewart EL, Kalman RI, Minges JT, Wilson EM. (2004) Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 16:425–438.

    Article  PubMed  CAS  Google Scholar 

  • Heemers HV, Tindall DJ. (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808.

    Article  PubMed  CAS  Google Scholar 

  • Heinlein CA, Chang C. (2002) Androgen receptor coregulators: an overview. Endocr Rev 23:175–200.

    Article  PubMed  CAS  Google Scholar 

  • Hsu C-L, Chen Y-L, Yeh S, Ting H-J, Hu Y-C, Lin H, Wang X, Chang C. (2003) The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL (F?W) and FxxLY new signature motifs. J Biol Chem 278:23691–23698.

    Article  PubMed  CAS  Google Scholar 

  • Hu YC, Yan S, Yeh SD, Sampson ER, Huang J, Li P, Hsu CL, Ting HJ, Lin HK, Wang L, Kim E, Ni J, Chang C. (2004) Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J Biol Chem 279:33438–33446.

    Article  PubMed  CAS  Google Scholar 

  • Hur E, Pfaff SJ, Payne ES, Gron H, Buehrer BM, Fletterick RJ. (2004) Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2:1301–1312.

    Article  Google Scholar 

  • Li Y, Lambert MH, Xu HE. (2003) Activation of nuclear receptors: a perspective from functional genomics. Structure 11:741–746.

    Article  PubMed  Google Scholar 

  • McKenna NJ, O’Malley BW. (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474.

    Article  PubMed  CAS  Google Scholar 

  • Ozers MSS, Marks BD, Gowda K, Kupcho KR, Ervin KM, De Rosier T, Qadir N, Eliason HC, Riddle SM, Shekhani MS. (2007) The androgen receptor T877A mutant recruits LXXLL and FXXLF peptides differently than wild-type androgen receptor in a time-resolved fluorescence resonance energy transfer assay. Biochemistry 46:683–695.

    Article  PubMed  Google Scholar 

  • Rosenfeld MG, Lunyak VV, Glass CK. (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428.

    Article  PubMed  CAS  Google Scholar 

  • Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AAK, Miner JN, Diamond MI. (2005) The structural basis of androgen receptor activation: intramolecular and intermolecular amino–carboxy interactions. Proc Natl Acad Sci USA 102:9802–9807.

    Article  PubMed  CAS  Google Scholar 

  • Steketee K, Berrevoets CA, Dubbink HJ, Doesburg P, Hersmus R, Brinkmann AO, Trapman J. (2002) Amino acids 3-13 and amino acids in and flanking the FXXLF motif modulate the interaction between the amino-terminal and ligand-binding domain of the androgen receptor. Eur J Biochem 269:5780–5791.

    Article  PubMed  CAS  Google Scholar 

  • van de Wijngaart DJ, van Royen ME, Hersmus R, Pike ACW, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ. (2006) Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 281:19407–19416.

    Article  PubMed  CAS  Google Scholar 

  • van Royen ME, Cunha SM, Brink M, Mattern KA, Nigg AL, Dubbink HJ, Verschure PJ, Trapman J, Houtsmuller AB. (2007) Compartmentalization of androgen receptor protein–protein interactions in living cells. J Cell Biol 177:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C. (2004) Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol Cell Biol 24:2202–2213.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author is indebted to Martin van Royen and Dennis van de Wijngaart for help with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Trapman .

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trapman, J. (2009). Interaction of the Androgen Receptor Ligand-Binding Domain with the N-Terminal Domain and with Coactivators. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_16

Download citation

Publish with us

Policies and ethics