Skip to main content

Molecular Targeting of Post-transplant Lymphoproliferative Disorders

  • Chapter
  • First Online:
Molecularly Targeted Therapy for Childhood Cancer
  • 583 Accesses

Abstract

Post-transplant lymphoproliferative disorders (PTLD) represent a heterogeneous group of life-threatening lymphoproliferative disorders that can be observed in a transplant recipient. PTLD can occur in patients after solid organ transplantation (SOT) because of immunosuppression to prevent graft rejection (Penn et al. 1969), and continues to be a major cause of morbidity and mortality seen in about 10% of pediatric SOT recipients. There is a higher incidence in children following SOT than in adults (Ho et al. 1988; Swerdlow et al. 2000), with highest incidence of 20% following heart-lung transplant. PTLD occurs in hematopoietic stem cell transplantation (HSCT) recipients secondary to the immunosuppression of pre-HSCT preparative regimens, and the post-HSCT immunosuppression to prevent graft vs host disease (GVHD). PTLD in HSCT occurs at a lower rate than following SOT (approximately 1%), with the vast majority occurring within 6 months following HSCT (Bhatia et al. 1996; Curtis et al. 1999). Accordingly, few cases of PTLD have been reported after autologous HSCT (Lones et al. 2000; Nash et al. 2003). PTLD is associated with Epstein–Barr virus (EBV) and inadequate EBV immunity in the majority of cases. PTLD following HSCT is essentially all EBV-associated. EBV-negative PTLD occurs following SOT in as many as 30% of cases. (Leblond et al. 2001). The pathogenesis, treatment strategies and outcome differ from EBV-positive PTLD, as EBV-negative disease tends to require more aggressive therapy and portends a worse prognosis. This chapter will focus on EBV positive PTLD and molecularly targeted therapies in its prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, K. S., T. E. DeFor, et al. (2003). “New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors.” J Clin Oncol 21(7): 1352–8.

    Article  PubMed  Google Scholar 

  • Bejarano, M. T. and M. G. Masucci (1998). “Interleukin-10 abrogates the inhibition of Epstein-Barr virus-induced B-cell transformation by memory T-cell responses.” Blood 92(11): 4256–62.

    PubMed  CAS  Google Scholar 

  • Bhatia, S., N. K. Ramsay, et al. (1996). “Malignant neoplasms following bone marrow transplantation.” Blood 87(9): 3633–9.

    PubMed  CAS  Google Scholar 

  • Boeckh, M., W. G. Nichols, et al. (2003). “Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies.” Biol Blood Marrow Transplant 9(9): 543–58.

    Article  PubMed  Google Scholar 

  • Bollard, C. M., B. Savoldo, et al. (2003). “Adoptive T-cell therapy for EBV-associated post-transplant lymphoproliferative disease.” Acta Haematol 110(2–3): 139–48.

    Article  PubMed  Google Scholar 

  • Callan, M. F., N. Steven, et al. (1996). “Large clonal expansions of CD8+ T cells in acute infectious mononucleosis.” Nat Med 2(8): 906–11.

    Article  PubMed  CAS  Google Scholar 

  • Callan, M. F., L. Tan, et al. (1998). “Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo.” J Exp Med 187(9): 1395–402.

    Article  PubMed  CAS  Google Scholar 

  • Catalina, M. D., J. L. Sullivan, et al. (2001). “Differential evolution and stability of epitope-specific CD8(+) T cell responses in EBV infection.” J Immunol 167(8): 4450–7.

    PubMed  CAS  Google Scholar 

  • Choquet, S., V. Leblond, et al. (2006). “Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study.” Blood 107(8): 3053–7.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. I. and K. Lekstrom (1999). “Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells.” J Virol 73(9): 7627–32.

    PubMed  CAS  Google Scholar 

  • Collins, M. H., K. T. Montone, et al. (2001). “Autopsy pathology of pediatric posttransplant lymphoproliferative disorder.” Pediatrics 107(6): E89.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, R. E., L. B. Travis, et al. (1999). “Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study.” Blood 94(7): 2208–16.

    PubMed  CAS  Google Scholar 

  • Daibata, M., K. Bandobashi, et al. (2005). “Induction of lytic Epstein-Barr virus (EBV) infection by synergistic action of rituximab and dexamethasone renders EBV-positive lymphoma cells more susceptible to ganciclovir cytotoxicity in vitro and in vivo.” J Virol 79(9): 5875–9.

    Article  PubMed  CAS  Google Scholar 

  • Demidem, A., T. Lam, et al. (1997). “Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs.” Cancer Biother Radiopharm 12(3): 177–86.

    Article  PubMed  CAS  Google Scholar 

  • Dolcetti, R. and M. G. Masucci (2003). “Epstein-Barr virus: induction and control of cell transformation.” J Cell Physiol 196(2): 207–18.

    Article  PubMed  CAS  Google Scholar 

  • Dykstra, M. L., R. Longnecker, et al. (2001). “Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR.” Immunity 14(1): 57–67.

    Article  PubMed  CAS  Google Scholar 

  • El-Salem, M., P. N. Raghunath, et al. (2007). “Constitutive activation of mTOR signaling pathway in post-transplant lymphoproliferative disorders.” Lab Invest 87(1): 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Feng, W. H., G. Hong, et al. (2004). “Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas.” J Virol 78(4): 1893–902.

    Article  PubMed  CAS  Google Scholar 

  • Feng, W. H. and S. C. Kenney (2006). “Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression.” Cancer Res 66(17): 8762–9.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., C. M. Rooney, et al. (2008). “Adoptive cellular immunotherapy for viral diseases.” Bone Marrow Transplant 41(2): 193–8.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, H. M., M. I. Gharib, et al. (2006). “The impact of monitoring Epstein-Barr virus PCR in paediatric bone marrow transplant patients: can it successfully predict outcome and guide intervention?” Pediatr Blood Cancer 47(2): 200–5.

    Article  PubMed  Google Scholar 

  • Gregory, C. D., C. Dive, et al. (1991). “Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis.” Nature 349(6310): 612–4.

    Article  PubMed  CAS  Google Scholar 

  • Gross, T. G. (2007). “Post-transplant lymphoproliferative disease in children following solid organ transplant and rituximab – the final answer?” Pediatr Transplant 11(6): 575–7.

    Article  PubMed  Google Scholar 

  • Gross, T. G., J. C. Bucuvalas, et al. (2005). “Low-dose chemotherapy for Epstein-Barr virus-positive post-transplantation lymphoproliferative disease in children after solid organ transplantation.” J Clin Oncol 23(27): 6481–8.

    Article  PubMed  CAS  Google Scholar 

  • Gross, T. G., M. Steinbuch, et al. (1999). “B cell lymphoproliferative disorders following hematopoietic stem cell transplantation: risk factors, treatment and outcome.” Bone Marrow Transplant 23(3): 251–8.

    Article  PubMed  CAS  Google Scholar 

  • Haque, T., G. M. Wilkie, et al. (2007). “Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial.” Blood 110(4): 1123–31.

    Article  PubMed  CAS  Google Scholar 

  • Harris, N. L., E. S. Jaffe, et al. (1999). “World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997.” J Clin Oncol 17(12): 3835–49.

    PubMed  CAS  Google Scholar 

  • Henderson, S., M. Rowe, et al. (1991). “Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death.” Cell 65(7): 1107–15.

    Article  PubMed  CAS  Google Scholar 

  • Hislop, A. D., N. E. Annels, et al. (2002). “Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection.” J Exp Med 195(7): 893–905.

    Article  PubMed  CAS  Google Scholar 

  • Hislop, A. D., G. S. Taylor, et al. (2007). “Cellular responses to viral infection in humans: lessons from Epstein-Barr virus.” Annu Rev Immunol 25: 587–617.

    Article  PubMed  CAS  Google Scholar 

  • Ho, M., R. Jaffe, et al. (1988). “The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children.” Transplantation 45(4): 719–27.

    Article  PubMed  CAS  Google Scholar 

  • Hofelmayr, H., L. J. Strobl, et al. (2001). “Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells.” J Virol 75(5): 2033–40.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, R. D., K. Orban-Eller, et al. (2002). “Response of elevated Epstein-Barr virus DNA levels to therapeutic changes in pediatric liver transplant patients: 56-month follow up and outcome.” Transplantation 74(3): 367–72.

    Article  PubMed  Google Scholar 

  • Kawanishi, M., S. Tada-Oikawa, et al. (2002). “Epstein-Barr virus BHRF1 functions downstream of Bid cleavage and upstream of mitochondrial dysfunction to inhibit TRAIL-induced apoptosis in BJAB cells.” Biochem Biophys Res Commun 297(3): 682–7.

    Article  PubMed  CAS  Google Scholar 

  • Kilger, E., A. Kieser, et al. (1998). “Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor.” EMBO J 17(6): 1700–9.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, S. L. and O. M. Martinez (2007). “Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10.” J Immunol 179(12): 8225–34.

    PubMed  CAS  Google Scholar 

  • Leblond, V., N. Dhedin, et al. (2001). “Identification of prognostic factors in 61 patients with posttransplantation lymphoproliferative disorders.” J Clin Oncol 19(3): 772–8.

    PubMed  CAS  Google Scholar 

  • Lee, J. J., M. S. Lam, et al. (2007). “Role of chemotherapy and rituximab for treatment of posttransplant lymphoproliferative disorder in solid organ transplantation.” Ann Pharmacother 41(10): 1648–59.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. M., K. H. Lee, et al. (2002). “Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis.” Proc Natl Acad Sci USA 99(18): 11878–83.

    Article  PubMed  CAS  Google Scholar 

  • Lones, M. A., I. Kirov, et al. (2000). “Post-transplant lymphoproliferative disorder after autologous peripheral stem cell transplantation in a pediatric patient.” Bone Marrow Transplant 26(9): 1021–4.

    Article  PubMed  CAS  Google Scholar 

  • Maini, M. K., N. Gudgeon, et al. (2000). “Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype.” J Immunol 165(10): 5729–37.

    PubMed  CAS  Google Scholar 

  • Majewski, M., M. Korecka, et al. (2003). “Immunosuppressive TOR kinase inhibitor everolimus (RAD) suppresses growth of cells derived from posttransplant lymphoproliferative disorder at allograft-protecting doses.” Transplantation 75(10): 1710–7.

    Article  PubMed  CAS  Google Scholar 

  • Majewski, M., M. Korecka, et al. (2000). “The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders.” Proc Natl Acad Sci USA 97(8): 4285–90.

    Article  PubMed  CAS  Google Scholar 

  • Meij, P., J. W. van Esser, et al. (2003). “Impaired recovery of Epstein-Barr virus (EBV) – specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease.” Blood 101(11): 4290–7.

    Article  PubMed  CAS  Google Scholar 

  • Mentzer, S. J., S. P. Perrine, et al. (2001). “Epstein-Barr virus post-transplant lymphoproliferative disease and virus-specific therapy: pharmacological re-activation of viral target genes with arginine butyrate.” Transpl Infect Dis 3(3): 177–85.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K. W., R. de Waal Malefyt, et al. (2001). “Interleukin-10 and the interleukin-10 receptor.” Annu Rev Immunol 19: 683–765.

    Article  PubMed  CAS  Google Scholar 

  • Nash, R. A., R. Dansey, et al. (2003). “Epstein-Barr virus-associated posttransplantation lymphoproliferative disorder after high-dose immunosuppressive therapy and autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases.” Biol Blood Marrow Transplant 9(9): 583–91.

    Article  PubMed  Google Scholar 

  • Nemerow, G. R., C. Mold, et al. (1987). “Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d.” J Virol 61(5): 1416–20.

    PubMed  CAS  Google Scholar 

  • Nepomuceno, R. R., C. E. Balatoni, et al. (2003). “Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas.” Cancer Res 63(15): 4472–80.

    PubMed  CAS  Google Scholar 

  • Oertel, S. H., E. Verschuuren, et al. (2005). “Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD).” Am J Transplant 5(12): 2901–6.

    Article  PubMed  CAS  Google Scholar 

  • Opelz, G. and B. Dohler (2004). “Lymphomas after solid organ transplantation: a collaborative transplant study report.” Am J Transplant 4(2): 222–30.

    Article  PubMed  Google Scholar 

  • Pascual, J. (2007). “Post-transplant lymphoproliferative disorder – the potential of proliferation signal inhibitors.” Nephrol Dial Transplant 22(Suppl 1): i27–35.

    Article  PubMed  CAS  Google Scholar 

  • Pedneault, L., N. Lapointe, et al. (1998). “Natural history of Epstein-Barr virus infection in a prospective pediatric cohort born to human immunodeficiency virus-infected mothers.” J Infect Dis 177(4): 1087–90.

    Article  PubMed  CAS  Google Scholar 

  • Penn, I., W. Hammond, et al. (1969). “Malignant lymphomas in transplantation patients.” Transplant Proc 1(1): 106–12.

    PubMed  CAS  Google Scholar 

  • Perrine, S. P., O. Hermine, et al. (2007). “A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies.” Blood 109(6): 2571–8.

    Article  PubMed  CAS  Google Scholar 

  • Reff, M. E., K. Carner, et al. (1994). “Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20.” Blood 83(2): 435–45.

    PubMed  CAS  Google Scholar 

  • Rickinson, A. B., M. F. Callan, et al. (2000). “T-cell memory: lessons from Epstein-Barr virus infection in man.” Philos Trans R Soc Lond B Biol Sci 355(1395): 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Rickinson, A. B. and E., Kieff (2007). Epstein-Barr Virus. Fields Virology. In: D. M. Knipe, P.M., Howley (eds). Philadelphia, Lippencott Williams & Wilkens. 2: 2655–700.

    Google Scholar 

  • Rigaud, S., M. C. Fondaneche, et al. (2006). “XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome.” Nature 444(7115): 110–4.

    Article  PubMed  CAS  Google Scholar 

  • Saridakis, V., Y. Sheng, et al. (2005). “Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization.” Mol Cell 18(1): 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Savoldo, B., J. A. Goss, et al. (2006). “Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs).” Blood 108(9): 2942–9.

    Article  PubMed  CAS  Google Scholar 

  • Sindhi, R., S. Webber, et al. (2001). “Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus.” Transplantation 72(5): 851–5.

    Article  PubMed  CAS  Google Scholar 

  • Smets, F., D. Latinne, et al. (2002). “Ratio between Epstein-Barr viral load and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease.” Transplantation 73(10): 1603–10.

    Article  PubMed  Google Scholar 

  • Snow, A. L., S. L. Lambert, et al. (2006). “EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis.” J Immunol 177(5): 3283–93.

    PubMed  CAS  Google Scholar 

  • Sokal, E. M., K. Hoppenbrouwers, et al. (2007). “Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults.” J Infect Dis 196(12): 1749–53.

    Article  PubMed  Google Scholar 

  • Stevens, S. J., E. A. Verschuuren, et al. (2001). “Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients.” Blood 97(5): 1165–71.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, A. J., C. D. Higgins, et al. (2000). “Risk of lymphoid neoplasia after cardiothoracic transplantation. a cohort study of the relation to Epstein-Barr virus.” Transplantation 69(5): 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, S. H. (1992). “Post-transplant lymphoproliferative disorders: a morphologic, phenotypic and genotypic spectrum of disease.” Histopathology 20(5): 373–85.

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson, D. A. (2001). “Epstein-Barr virus: exploiting the immune system.” Nat Rev Immunol 1(1): 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Veillette, A., Z. Dong, et al. (2007). “Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes.” Immunity 27(5): 698–710.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H. J., Y. C. Cheng, et al. (2004). “Prompt versus preemptive intervention for EBV lymphoproliferative disease.” Blood 103(10): 3979–81.

    Article  PubMed  CAS  Google Scholar 

  • Williams, H., K. McAulay, et al. (2005). “The immune response to primary EBV infection: a role for natural killer cells.” Br J Haematol 129(2): 266–74.

    Article  PubMed  Google Scholar 

  • Woodberry, T., T. J. Suscovich, et al. (2005). “Differential targeting and shifts in the immunodominance of Epstein-Barr virus-specific CD8 and CD4 T cell responses during acute and persistent infection.” J Infect Dis 192(9): 1513–24.

    Article  PubMed  CAS  Google Scholar 

  • Young, L. S., C. W. Dawson, et al. (1999). “Epstein-Barr virus and apoptosis: viral mimicry of cellular pathways.” Biochem Soc Trans 27(6): 807–12.

    PubMed  CAS  Google Scholar 

  • Young, L. S. and A. B. Rickinson (2004). “Epstein-Barr virus: 40 years on.” Nat Rev Cancer 4(10): 757–68.

    Article  PubMed  CAS  Google Scholar 

  • Zeidler, R., G. Eissner, et al. (1997). “Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10.” Blood 90(6): 2390–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, M., Gross, T.G. (2010). Molecular Targeting of Post-transplant Lymphoproliferative Disorders. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_11

Download citation

Publish with us

Policies and ethics