Skip to main content

Use of Both Anode and Cathode Reactions in Wastewater Treatment

  • Chapter
  • First Online:
Electrochemistry for the Environment

Abstract

Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield OH and Fe3 + from Fenton’s reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by OH formed in the medium from Fenton’s reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized with OH formed from both electrogenerated Fe2 + and H2O2 or removed by parallel coagulation with the FeOH3 precipitate formed from the excess of Fe3 + generated from Fenton’s reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron, J. –J. and Oturan, M. A. (2001) New photochemical and electrochemical methods for the degradation of pesticides in aqueous media. Environmental applications. Turk. J. Chem. 25, 509–520.

    Google Scholar 

  • Alvarez-Gallegos, A. and Pletcher, D. (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous cathode cell. Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim. Acta 44, 853–861.

    CAS  Google Scholar 

  • Alverez-Gallegos, A. and Pletcher, D. (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochim. Acta 44, 2483–2492.

    CAS  Google Scholar 

  • Alvarez Gallegos, A., Vergara García, Y. and Zamudio, A. (2005) Solar hydrogen peroxide. Solar Energy Mater. Solar Cells 88, 157–167.

    Article  Google Scholar 

  • Badellino, C., Rodrigues, C. A. and Bertazzoli, R. (2006) Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid. J. Hazard. Mater. B137, 856–864.

    Article  Google Scholar 

  • Bellakhal, N., Oturan, M. A., Oturan, N. and Dachraoui, M. (2006) Olive oil mill wastewater treatment by the electro-Fenton Process. Environ. Chem. 3, 345–349.

    Article  CAS  Google Scholar 

  • Boye, B., Dieng, M. M. and Brillas, E. (2002) Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 36, 3030–3035.

    Article  CAS  Google Scholar 

  • Boye, B., Brillas, E. and Dieng, M. M. (2003a) Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation. J. Electroanal. Chem. 540, 25–34.

    Article  CAS  Google Scholar 

  • Boye, B., Dieng, M. M. and Brillas, E. (2003b) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim. Acta 48, 781–790.

    CAS  Google Scholar 

  • Boye, B., Dieng, M. M. and Brillas, E. (2003c) Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid. J. Electroanal. Chem. 557, 135–146.

    Article  CAS  Google Scholar 

  • Boye, B., Farnia, G., Sandonà, G., Buso, A. and Giomo, M. (2005) Removal of vegetal tannins from wastewater by electroprecipitation combined with electrogenerated Fenton oxidation. J. Appl. Electrochem. 35, 369–374.

    Article  CAS  Google Scholar 

  • Boye, B., Brillas, E., Buso, A., Farnia, G., Flox, C., Giomo, M. and Sandonà, G. (2006) Electrochemical removal of gallic acid from aqueous solutions. Electrochim. Acta 52, 256–262.

    Article  CAS  Google Scholar 

  • Brillas, E. and Casado, J. (2002) Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47, 241–248.

    Article  CAS  Google Scholar 

  • Brillas, E., Bastida, R. M., Llosa, E. and Casado, J. (1995) Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 142, 1733–1741.

    Article  CAS  Google Scholar 

  • Brillas, E., Mur, E. and Casado, J. (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 143, L49–L53.

    Article  CAS  Google Scholar 

  • Brillas, E., Sauleda, R. and Casado, J. (1997) Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. J. Electrochem. Soc. 144, 2374–2379.

    Article  CAS  Google Scholar 

  • Brillas, E., Mur, E., Sauleda, R., Sánchez, L., Peral, J., Domènech, X. and Casado, J. (1998a) Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ. 16, 31–42.

    Article  CAS  Google Scholar 

  • Brillas, E., Sauleda, R. and Casado, J. (1998b) Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J. Electrochem. Soc. 145, 759–765.

    Article  CAS  Google Scholar 

  • Brillas, E., Calpe, J. C. and Casado, J. (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res. 34, 2253–2262.

    Article  CAS  Google Scholar 

  • Brillas, E., Baños, M. A. and Garrido, J. A. (2003a) Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochim. Acta 48, 1697–1705.

    Article  CAS  Google Scholar 

  • Brillas, E., Boye, B., Baños, M. A., Calpe, J. C. and Garrido, J. A. (2003b) Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 51, 227–235.

    Article  CAS  Google Scholar 

  • Brillas, E., Boye, B. and Dieng, M. M. (2003c) Peroxi-coagulation and photoperoxi-coagulation treatments of the herbicide 4-chlorophenoxyacetic acid in aqueous medium using an oxygen-diffusion cathode. J. Electrochem. Soc. 150, E148–E154.

    Article  CAS  Google Scholar 

  • Brillas, E., Boye, B. and Dieng, M. M. (2003d) General and UV-assisted cathodic Fenton treatments for the mineralization of herbicide MCPA. J. Electrochem. Soc. 150, E583–E589.

    Article  CAS  Google Scholar 

  • Brillas, E., Baños, M. A., Camps, S., Arias, C., Cabot, P. L., Garrido, J. A. and Rodríguez, R. M. (2004a) Catalytic effect of Fe2 +, Cu2 + and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J. Chem. 28, 314–322.

    Article  CAS  Google Scholar 

  • Brillas, E., Boye, B., Sirés, I., Garrido, J. A., Rodríguez, R. M., Arias, C., Cabot, P. L. and Comninellis, Ch. (2004b) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 49, 4487–4496.

    Article  CAS  Google Scholar 

  • Comninellis, Ch and De Battisti, A. (1996) Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. J. Chim. Phys. 93, 673–679.

    CAS  Google Scholar 

  • Da Pozzo, A., Di Palma, L., Merli, C. and Petrucci, E. (2005a) An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J. Appl. Electrochem. 35, 413–419.

    Article  Google Scholar 

  • Da Pozzo, A., Merli, C., Sirés, I., Garrido, J. A., Rodríguez, R. M. and Brillas, E. (2005b) Removal of the herbicide amitrole from water by anodic oxidation and electro-Fenton. Environ. Chem. Lett. 3, 7–11.

    Article  Google Scholar 

  • De Laat, J. and H. Gallard, H. (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ. Sci. Technol. 33, 2726–2732.

    Google Scholar 

  • Do, J. -S. and Chen, C. -P. (1993) In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. J. Electrochem. Soc. 140, 1632–1637.

    Article  CAS  Google Scholar 

  • Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. and Rambaud, A. (2001a) Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem. 31, 877–882.

    Article  CAS  Google Scholar 

  • Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. and Rambaud, A. (2001b) Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell. Water Res. 35, 3235–3241.

    Article  CAS  Google Scholar 

  • Edelahi, M. C., Oturan, N., Oturan, M. A., Padellec, Y., Bermond, A. and El Kacemi, K. (2004) Degradation of diuron by the electro-Fenton process. Environ. Chem. Lett. 1, 233–236.

    Article  CAS  Google Scholar 

  • Ferro, S., De Battisti, A., Duo, I., Comninellis, Ch., Haenni, W. and Perret, A. (2000) Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 147, 2614–2619.

    Article  CAS  Google Scholar 

  • Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A. V. and Abdelhedi, R. (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo Carmine in acidic aqueous medium. Appl. Catal. B: Environ. 67, 93–104.

    Article  CAS  Google Scholar 

  • Fockedey, E. and Van Lierde, A. (2002) Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Res. 36, 4169–4175.

    Article  CAS  Google Scholar 

  • Foller, P. C. and Bombard, R. T. (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem. 25, 613–627.

    Article  CAS  Google Scholar 

  • Gallard, H., De Laat, J. and Legube, B. (1999) Comparative study of the rate of decomposition of H2O2 and of atrazine by Fe(III) ∕ H2O2, Cu(II) ∕ H2O2, \(\mathrm{Fe}(\mathrm{III})/\mathrm{Cu}(\mathrm{II})/{\mathrm{H}}_{2}{\mathrm{O}}_{2}\). Rev. Sci. Eau 12, 715–728.

    Google Scholar 

  • Gözmen, B., Oturan, M. A., Oturan, N. and Erbatur, O. (2003) Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent. Environ. Sci. Technol. 37, 3716–3723.

    Article  Google Scholar 

  • Guivarch, E., Oturan, N. and Oturan, M. A. (2003a) Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environ. Chem. Lett. 1, 165–168.

    Article  CAS  Google Scholar 

  • Guivarch, E., Trevin, S., Lahitte, C. and Oturan, M. A. (2003b) Degradation of azo dyes in water by electro-Fenton process. Environ. Chem. Lett. 1, 38–44.

    Article  CAS  Google Scholar 

  • Hanna, K., Chiron, S. and Oturan, M. A. (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res. 39, 2763–2773.

    Article  CAS  Google Scholar 

  • Harrington, T. and Pletcher, D. (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes. J. Electrochem. Soc. 146, 2983–2989.

    Article  CAS  Google Scholar 

  • Hsiao, Y. L. and Nobe, K. (1993) Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton’s reagent. J. Appl. Electrochem. 39, 943–946.

    Article  Google Scholar 

  • Irmak, S., Yavuz, H. I. and Erbatur, O (2005) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ. 63, 243–248.

    Article  Google Scholar 

  • Marselli, B., Garcia-Gomez, J., Michaud, P. -A., Rodrigo, M. A. and Comninellis, Ch. (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, D79–D83.

    Article  CAS  Google Scholar 

  • Matsue, T., Fujihira, M. and Osa, T. (1981) Oxidation of alkylbenzenes by electrogenerated hydroxyl radical. J. Electrochem. Soc. 128, 2565–2569.

    Article  CAS  Google Scholar 

  • Meinero, S. and Zerbinati, O. (2006) Oxidative and energetic efficiency of different electrochemical oxidation processes for chloroanilines abatement in aqueous medium. Chemosphere 64, 386–392.

    Article  CAS  Google Scholar 

  • Oturan, M. A. (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. J. Appl. Electrochem. 30, 475–482.

    Article  CAS  Google Scholar 

  • Oturan, M. A. and Pinson, J. (1995) Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: Products and isomer distribution. J. Phys. Chem. 99, 13948–13954.

    CAS  Google Scholar 

  • Oturan, M. A., Pinson, J., Deprez, D. and Terlain, B. (1992) Polyhydroxylation of salicylic acid by electrochemically generated hydroxyl radicals. New J. Chem. 16, 705–710.

    CAS  Google Scholar 

  • Oturan, M. A., Aaron, J. J., Oturan, N. and Pinson, J. (1999a) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pestic. Sci. 55, 558–562.

    Article  CAS  Google Scholar 

  • Oturan, M. A., Pinson, J., Oturan, N. and Deprez, D. (1999b) Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of riluzole. New J. Chem. 23, 793–794.

    CAS  Google Scholar 

  • Oturan, M. A., Peiroten, J., Chartrin, P. and Acher, A. J. (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ. Sci. Technol. 34, 3474–3479.

    Article  CAS  Google Scholar 

  • Oturan, M. A., Oturan, N., Lahitte, C. and Trevin, S. (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Application to the mineralization of an organic micropollutant, pentachlorophenol. J. Electroanal. Chem. 507, 96–102.

    Article  CAS  Google Scholar 

  • Panizza, M. and Cerisola, G. (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res. 35, 3987–3992.

    Article  CAS  Google Scholar 

  • Panizza, M. and Cerisola, G. (2005) Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191–199.

    Article  CAS  Google Scholar 

  • Peralta-Hernández, J. M., Meas-Vong, Y., Rodríguez, F. J., Chapman, T. W., Maldonado, M. I. and Godínez, L. A. (2006) In situ electrochemical and photo-electrochemical generation of the Fenton reagent: A potentially important new water treatment technology. Water Res. 40, 1754–1762.

    Article  Google Scholar 

  • Plant, L. and Jeff, M. (1994) Hydrogen peroxide: A potent force to destroy organics in wastewater. Chem. Eng. 101, 16–20.

    Google Scholar 

  • Pletcher, D. (1999) Indirect oxidations using electrogenerated hydrogen peroxide. Acta Chem. Scand. 53, 745–750.

    Article  CAS  Google Scholar 

  • Ponce De Leon, C. and Pletcher, D. (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J. Appl. Electrochem. 25, 307–314.

    CAS  Google Scholar 

  • Pratap, K. and Lemley, A. T. (1998) Fenton electrochemical treatment of aqueous atrazine and metolachlor. J. Agric. Food Chem. 46, 3285–3291.

    Article  CAS  Google Scholar 

  • Qiang, Z., Chang, J. H. and Huang, C. P. (2003) Electrochemical regeneration of Fe2 + in Fenton oxidation processes. Water Res. 37, 1308–1319.

    Article  CAS  Google Scholar 

  • Sharma, V. K. and Millero, F. J. (1988) Oxidation of copper(I) in seawater. Environ. Sci. Technol. 22, 768–771.

    Article  CAS  Google Scholar 

  • Sirés, I., Arias, C., Cabot, P. L., Centellas, F., Rodríguez, R. M., Garrido, J. A. and Brillas, E. (2004) Paracetamol mineralization by advanced electrochemical oxidation processes for wastewater treatment. Environ. Chem. 1, 26–28.

    Article  Google Scholar 

  • Sirés, I., Garrido, J. A., Rodríguez, R. M., Cabot, P. L.,Centellas, F., Arias, C. and Brillas, E. (2006) Electrochemical degradation of paracetamol from water by catalytic action of Fe2 +, Cu2 +, and UVA light on electrogenerated hydrogen peroxide. J. Electrochem. Soc. 153, D1–D9.

    Article  Google Scholar 

  • Song-hu, Y. and Xiao-hua, L. (2005) Comparison treatment of various chlorophenols by electro-Fenton method: Relationship between chlorine content and degradation. J. Hazard. Mater. B118, 85–92.

    Article  Google Scholar 

  • Sudoh, M., Kodera, T., Sakai, K., Zhang, J. Q. and Koide, K. (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton’s reagent. J. Chem. Eng. Jpn 19, 513–518.

    Article  CAS  Google Scholar 

  • Sun, Y. and Pignatello, J. J. (1993) Photochemical reactions involved in the total mineralization of 2,4-D by \({\mathrm{Fe}}^{3+}/{\mathrm{H}}_{2}{\mathrm{O}}_{2}/\mathrm{UV}\). Environ. Sci. Technol. 27, 304–310.

    Article  Google Scholar 

  • Tomat, R. and Rigo, A. (1976) Electrochemical production of hydroxyl radicals and their reaction with toluene. J. Appl. Electrochem. 6, 257–261.

    Article  CAS  Google Scholar 

  • Tomat, R. and Rigo, A. (1979) Oxidation of polymethylated benzenes promoted by hydroxyl radicals. J. Appl. Electrochem. 9, 301–305.

    Article  CAS  Google Scholar 

  • Tomat, R. and Rigo, A. (1984) Electrochemical oxidation of toluene promoted by hydroxyl radicals. J. Appl. Electrochem. 14, 1–8.

    Article  CAS  Google Scholar 

  • Tomat, R. and Rigo, A. (1985) Electrochemical oxidation of aliphatic hydrocarbons promoted by inorganic radicals. I. Hydroxyl radicals. J. Appl. Electrochem. 15, 167–173.

    Article  CAS  Google Scholar 

  • Tomat, R. and Vecchi, E. (1971) Electrocatalytic production of hydroxyl radicals and their oxidative addition to benzene. J. Appl. Electrochem. 1, 185–188.

    Article  CAS  Google Scholar 

  • Traube, M. (1882) Ueber die Aktivirung des Sauerstoffs. Ber. Dtsch. Chem.Ges. 15, 2434–2443.

    Article  Google Scholar 

  • Tzedakis, T., Savall, A. and Clifton, M. J. (1989) The electrochemical regeneration of Fenton’s reagent in the hydroxylation of aromatic substrates: Batch and continuous processes. J. Appl. Electrochem. 19, 911–921.

    Article  CAS  Google Scholar 

  • Ventura, A., Jacquet, G., Bermond, A. and Camel, V. (2002) Electrochemical generation of the Fenton’s reagent: Application to atrazine degradation. Water Res. 36, 3517–3522.

    Article  CAS  Google Scholar 

  • Wang, Q. and Lemley, A. T. (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ. Sci. Technol. 35, 4509–4514.

    Article  CAS  Google Scholar 

  • Wang, Q. and Lemley, A. T. (2002) Oxidation of diazinon by anodic Fenton treatment. Water Res. 36, 3237–3244.

    Article  CAS  Google Scholar 

  • Wang, Q. and Lemley, A. T. (2003) Oxidative degradation and detoxification of aqueous carbofuran by membrane anodic Fenton treatment. J. Hazard. Mater. B98, 241–255.

    Article  Google Scholar 

  • Wang, Q., Scherer, E. M. and Lemley, A. T. (2004) Metribuzin degradation by membrane anodic Fenton treatment and its interaction with ferric ion. Environ. Sci. Technol. 38, 1221–1227.

    Article  CAS  Google Scholar 

  • Wang, A., Qu, J., Ru, J., Liu, H. and Ge, J. (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65, 227–233.

    Article  CAS  Google Scholar 

  • Xie, Y. -B. and Li, X. -Z. (2006a) Degradation of Bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. J. Hazard. Mater. B138, 526–533.

    Article  Google Scholar 

  • Xie, Y. -B. and Li, X. -Z. (2006b) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes. Mater. Chem. Phys. 95, 39–50.

    Article  CAS  Google Scholar 

  • Yuan, S., Tian, M., Cui, Y., Lin, L. and Lu, X. (2006) Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J. Hazard. Mater. B137, 573–580.

    Article  Google Scholar 

  • Zuo, Y. and Hoigné, J. (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 26, 1014–1022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Brillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brillas, E., Sirés, I., Cabot, P.L. (2010). Use of Both Anode and Cathode Reactions in Wastewater Treatment. In: Comninellis, C., Chen, G. (eds) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_19

Download citation

Publish with us

Policies and ethics