Skip to main content

Electrical Stimulation of Mammalian Retinal Ganglion Cells Using Dense Arrays of Small-Diameter Electrodes

  • Chapter
Artificial Sight

Abstract

Current epiretinal implants contain a small number of electrodes with diameters of a few hundred microns. Smaller electrodes are desirable to increase the spatial resolution of artificial sight. To lay the foundation for the next generation of retinal prostheses, we assessed the stimulation efficacy of micro-fabricated arrays of 61 platinum disk electrodes with diameters 8–12 μm, spaced 60 μm apart. Isolated pieces of rat, guinea pig, and monkey retina were placed on the multi-electrode array ganglion cell side down and stimulated through individual electrodes with biphasic, charge-balanced current pulses. Spike responses from retinal ganglion cells were recorded either from the same or a neighboring electrode. Most pulses evoked only 1–2 spikes with short latencies (0.3–10 ms), and rarely was more than one recorded ganglion cell stimulated. Threshold charge densities for eliciting spikes in ganglion cells were typically below 0.15 mC/cm2 for pulse durations between 50 and 200 μs, corresponding to charge thresholds of ∼ 100 pC. Stimulation remained effective after several hours and at frequencies up to 100 Hz. Application of cadmium chloride did not abolish evoked spikes, implying direct activation. Thus, electrical stimulation of mammalian retina with small-diameter electrodes is achievable, providing high temporal and spatial precision with low charge densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Humayun M (2003) Clinical trial results with a 16-electrode epiretinal implant in end-stage RP patients. In: The First DOE International Symposium on Artificial Sight. Fort Lauderdale, FL: Department of Energy.

    Google Scholar 

  2. Santos A, Humayun MS, de Juan E, Jr., Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115: 511–515.

    Google Scholar 

  3. Humayun MS, Prince M, de Juan E, Jr., Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40: 143–148.

    Google Scholar 

  4. Cha K, Horch KW, Normann RA (1992) Mobility performance with a pixelized vision system. Vision Res 32: 1367–1372.

    Article  Google Scholar 

  5. Pollen DA (1977) Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol 14: 67–86.

    Article  Google Scholar 

  6. Brummer SB, Robblee LS, Hambrecht FT (1983) Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann N Y Acad Sci 405: 159–171.

    Article  ADS  Google Scholar 

  7. Tehovnik EJ (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods 65: 1–17.

    Article  Google Scholar 

  8. Humayun M, Propst R, de Juan E, Jr., McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112: 110–116.

    Google Scholar 

  9. Weiland JD, Humayun MS, Dagnelie G, de Juan E, Jr., Greenberg RJ, Iliff NT (1999) Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol 237: 1007–1013.

    Article  Google Scholar 

  10. Suzuki S, Humayun MS, Weiland JD, Chen SJ, Margalit E, Piyathaisere DV, de Juan E, Jr. (2004) Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina. Jpn J Ophthalmol 48: 345–349.

    Google Scholar 

  11. Dawson WW, Radtke ND (1977) The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 16: 249–252.

    Google Scholar 

  12. Wyatt J, Rizzo JF, Grumet A, Edell D, Jensen RJ (1994) Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit. Invest Ophthalmol Vis Sci 35: 1380. ARVO abstract.

    Google Scholar 

  13. Rizzo JF, Grumet AE, Edell D, Wyatt J, Jensen R (1997) Single-unit recording following extracellular stimulation of retinal ganglion cell axons in rabbits. Invest Ophthalmol Vis Sci 38: S40.

    Google Scholar 

  14. Jensen RJ, Rizzo JF, 3rd, Ziv OR, Grumet A, Wyatt J (2003) Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode. Invest Ophthalmol Vis Sci 44: 3533–3543.

    Article  Google Scholar 

  15. Hesse L, Schanze T, Wilms M, Eger M (2000) Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes Arch Clin Exp Ophthalmol 238: 840–845.

    Article  Google Scholar 

  16. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238: 315–318.

    Article  Google Scholar 

  17. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43: 2573–2581.

    Article  Google Scholar 

  18. Rizzo JF, 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44: 5355–5361.

    Article  Google Scholar 

  19. Grumet A (1999) Electric stimulation parameters for an epi-retinal prosthesis. In: Department of Electrical Engineering and Computer Science, p 144: Massachusetts Institute Of Technology.

    Google Scholar 

  20. Grumet AE, Wyatt JL, Jr., Rizzo JF, 3rd (2000) Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods 101: 31–42.

    Article  Google Scholar 

  21. Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39: 2555–2567.

    Article  Google Scholar 

  22. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Electrical multisite stimulation of the isolated chicken retina. Vision Res 40: 1785–1795.

    Article  Google Scholar 

  23. Meister M, Pine J, Baylor DA (1994) Multi-neuronal signals from the retina: acquisition and analysis. J Neurosci Methods 51: 95–106.

    Article  Google Scholar 

  24. Chichilnisky EJ, Baylor DA (1999) Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat Neurosci 2: 889–893.

    Article  Google Scholar 

  25. Litke AM (1998) The retinal readout system: an application of microstrip detector technology to neurobiology. Nucl Instrum Methods Phys Res A 418: 203–209.

    Article  ADS  Google Scholar 

  26. Litke AM, Chichilnisky EJ, Dabrowskic W, Grilloa AA, Grybosc P, S. K, Rahmand M, G. T (2003) Large-scale imaging of retinal output activity. Nucl Instrum Methods Phys Res A 501: 298–307.

    Article  ADS  Google Scholar 

  27. Litke AM (1999) The retinal readout system: a status report. Nucl Instrum Methods Phys Res A 435: 242–249.

    Article  ADS  Google Scholar 

  28. Brummer SB, Turner MJ (1977) Electrical stimulation with Pt electrodes: II-estimation of maximum surface redox (theoretical non-gassing) limits. IEEE Trans Biomed Eng 24: 440–443.

    Article  ADS  Google Scholar 

  29. Wandell BA (1995) Foundations of Vision, Sunderland, MA: Sinauer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sekirnjak, C., Hottowy, P., Sher, A., Dabrowski, W., Litke, A.M., Chichilnisky, E. (2007). Electrical Stimulation of Mammalian Retinal Ganglion Cells Using Dense Arrays of Small-Diameter Electrodes. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds) Artificial Sight. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49331-2_18

Download citation

Publish with us

Policies and ethics