Skip to main content

High-Resolution Opto-Electronic Retinal Prosthesis: Physical Limitations and Design

  • Chapter
Artificial Sight

Abstract

Electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa (RP). However, current retinal implants provide very low resolution (just a few electrodes), whereas many more pixels would be required for a functional restoration of sight.

This article presents a design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500pix/mm2 (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of subretinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays.

To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similarly to “virtual reality” devices. An image from a video camera is projected by a goggle-mounted pulsed infrared LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image-processing algorithms and stimulation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marc, R. E. and B. W. Jones (2003). “Retinal remodeling in inherited photoreceptor degenerations.” Mol Neurobiol 28(2): 139–147.

    Article  Google Scholar 

  2. Marc, R. E., B. W. Jones, et al. (2003). “Neural remodeling in retinal degeneration.” Prog Retin Eye Res 22(5): 607–655.

    Article  Google Scholar 

  3. Humayun, M. S., E. de Juan, et al. (1999). “Pattern electrical stimulation of the human retina.” Vision Research 39(15): 2569–2576.

    Article  Google Scholar 

  4. Humayun, M. S. (2003). Clinical Trial Results with a 16-Electrode Epiretinal Implant in End-Stage RP Patients. The First DOE International Symposium on Artificial Sight, Fort Lauderdale, FL, Department of Energy.

    Google Scholar 

  5. Rizzo, J. F., 3rd, J. Wyatt, et al. (2003). “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.” Invest Ophthalmol Vis Sci 44(12): 5355–5361.

    Article  Google Scholar 

  6. Rizzo, J. F., 3rd, J. Wyatt, et al. (2003). “Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials.” Invest Ophthalmol Vis Sci 44(12): 5362–5369.

    Article  Google Scholar 

  7. Humayun, M. S., J. D. Weiland, et al. (2003). “Visual perception in a blind subject with a chronic microelectronic retinal prosthesis.” Vision Research 43(24): 2573–2581.

    Article  Google Scholar 

  8. Smith, G. and D. A. Atchison (1997). The eye. The Eye and Visual Optical Instruments. Cambridge, Cambridge University Press: 291–316.

    Google Scholar 

  9. Margalit, E., M. Maia, et al. (2002). “Retinal prosthesis for the blind.” Survey of Ophthalmology 47(4): 335–356.

    Article  Google Scholar 

  10. Margalit, E., J. D. Weiland, et al. (2003). “Visual and electrical evoked response recorded from subdural electrodes implanted above the visual cortex in normal dogs under two methods of anesthesia.” Journal of Neuroscience Methods 123(2): 129–137.

    Article  Google Scholar 

  11. Sachs, H. G., K. Kobuch, et al. (2000). “Subretinal implantation of electrodes for acute in vivo stimulation of the retina to evoke cortical responses in minipig.” Investigative Ophthalmology & Visual Science 41(4): S102–S102.

    Google Scholar 

  12. Stett, A., W. Barth, et al. (2000). “Electrical multisite stimulation of the isolated chicken retina.” Vision Research 40(13): 1785–1795.

    Article  Google Scholar 

  13. Zrenner, E., F. Gekeler, et al. (2001). “Subretinal microphotodiode arrays to replace degenerated photoreceptors?” Ophthalmologe 98(4): 357–363.

    Article  Google Scholar 

  14. Palanker, D., A. Vankov, et al. (2005). “Design of a high resolution optoelectronic retinal prosthesis.” Journal of Neural Engineering 2: S105–S120.

    Article  ADS  Google Scholar 

  15. Palanker, D., P. Huie, et al. (2004). “Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis.” Invest Ophthalmol Vis Sci 45(9): 3266–3270.

    Article  Google Scholar 

  16. Palanker, D., P. Huie, et al. (2004). Attracting retinal cells to electrodes for high-resolution stimulation. SPIE, Ophthalmic Technologies, San Jose, CA, SPIE, vol. 5314.

    Google Scholar 

  17. Coppola, D. and D. Purves (1996). “The extraordinarily rapid disappearance of entopic images.” Proc Natl Acad Sci USA 93(15): 8001–8004.

    Article  ADS  Google Scholar 

  18. Coburn, B. (1989). “Neural modeling in electrical-stimulation.” Critical Reviews in Biomedical Engineering 17(2): 133–178.

    MathSciNet  Google Scholar 

  19. Yang, X. L. and S. M. Wu (1997). “Response sensitivity and voltage gain of the rod and cone bipolar cell synapses in dark-adapted tiger salamander retina.” Journal of Neurophysiology 78(5): 2662–2673.

    Google Scholar 

  20. Berntson, A. and W. R. Taylor (2000). “Response characteristics and receptive field widths of on-bipolar cells in the mouse retina.” Journal of Physiology-London 524(3): 879–889.

    Article  Google Scholar 

  21. Malmivuo, J. and R. Plonsey (1995). Hodgkin-Huxley membrane model. Bioelectromagnetism. New York, Oxford University Press: 74–93.

    Google Scholar 

  22. Hibino, M., H. Itoh, et al. (1993). “Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential.” Biophysical Journal 64(6): 1789–1800.

    Article  ADS  Google Scholar 

  23. Greenberg, R. J., T. J. Velte, et al. (1999). “A computational model of electrical stimulation of the retinal ganglion cell.” Ieee Transactions on Biomedical Engineering 46(5): 505–514.

    Article  Google Scholar 

  24. Jensen, R. J., O. R. Ziv, et al. (2005). “Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes.” Investigative Ophthalmology & Visual Science 46(4): 1486–1496.

    Article  Google Scholar 

  25. Aurian-Blajeni, B., X. Beebe, et al. (1989). “Impedance of hydrated iridium oxide electrodes.” Electrochimica Acta 34(6): 795–802.

    Article  Google Scholar 

  26. Weiland, J. D., D. J. Anderson, et al. (2002). “In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.” Ieee Transactions on Biomedical Engineering 49(12): 1574–1579.

    Article  Google Scholar 

  27. Hesse, L., T. Schanze, et al. (2000). “Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat.” Graefes Archive for Clinical and Experimental Ophthalmology 238(10): 840–845.

    Article  Google Scholar 

  28. Bard, A. J. and L. R. Faulkner (2001). Electrochemical Methods: Fundamentals and Applications. New York, John Wiley & Sons.

    Google Scholar 

  29. Oldham, K. B. (2004). “The RC time constant at a disk electrode.” Electrochemistry Communications 6(2): 210–214.

    Article  Google Scholar 

  30. Rohsenow, W. M., J. P. Hartnett, et al. (1985). Chapter 4. Handbook of Heat Transfer Fundamentals, McGraw-Hill: 164.

    Google Scholar 

  31. Bron, M., J. Radnik, et al. (2002). “EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black.” Journal of Electroanalytical Chemistry 535(1–2): 113–119.

    Article  Google Scholar 

  32. Hammerle, H., K. Kobuch, et al. (2002). “Biostability of micro-photodiode arrays for subretinal implantation.” Biomaterials 23(3): 797–804.

    Article  Google Scholar 

  33. Mozota, J. and B. E. Conway (1983). “Surface and bulk processes at oxidized iridium electrodes .1. Monolayer stage and transition to reversible multilayer oxide film behavior.” Electrochimica Acta 28(1): 1–8.

    Article  Google Scholar 

  34. Klein, J. D., S. L. Clauson, et al. (1989). “Morphology and charge capacity of sputtered iridium oxide-films.” Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 7(5): 3043–3047.

    Article  ADS  Google Scholar 

  35. Meyer, R. D., S. E. Cogan, et al. (2001). “Electrodeposited iridium oxide for neural stimulation and recording electrodes.” Ieee Transactions on Neural Systems and Rehabilitation Engineering 9(1): 2–11.

    Article  Google Scholar 

  36. Robblee, L. S., J. Mchardy, et al. (1980). “Electrical-stimulation with Pt electrodes .5. The effect of protein on Pt dissolution.” Biomaterials 1(3): 135–139.

    Article  Google Scholar 

  37. Rose, T. L. and L. S. Robblee (1990). “Electrical-stimulation with Pt electrodes .8. Electrochemically safe charge injection limits with 0.2Ms pulses.” Ieee Transactions on Biomedical Engineering 37(11): 1118–1120.

    Article  Google Scholar 

  38. Eckmiller, R., R. Hünermann, et al. (1999). “Exploration of a dialog-based tunable retina encoder for retina implants.” Neurocomputing 26–27: 1005–1011.

    Article  Google Scholar 

  39. Skavenski, A. A., R. M. Hansen, et al. (1979). “Quality of retinal image stabilization during small natural and artificial body rotations in man.” Vision Research 19(6): 675–683.

    Article  Google Scholar 

  40. Hammer, D. X., R. D. Ferguson, et al. (2003). “Compact scanning laser ophthalmoscope with high-speed retinal tracker.” Applied Optics 42(22): 4621–32.

    Article  ADS  Google Scholar 

  41. Kendir, G. A., W. T. Liu, et al. (2005). “An optimal design methodology for inductive power link with class-E amplifier.” Ieee Transactions on Circuits and Systems I-Regular Papers 52(5): 857–866.

    Article  Google Scholar 

  42. Baruth, O., D. Neumann, et al. (2003). “Pattern encoding and data encryption in learning retina implants.” Investigative Ophthalmology & Visual Science 44(suppl.2): U701–U701.

    Google Scholar 

  43. Olveczky, B. P., S. A. Baccus, et al. (2003). “Segregation of object and background motion in the retina.” Nature 423(6938): 401–408.

    Article  ADS  Google Scholar 

  44. Asher, A., Segal, W. A., Baccus, S. A., Yaroslavsky, L. P., Palanker, D. V. (2007). “Image processing for a high-resolution optoelectronic retinal prosthesis”. IEEE Transactions on Biomedical Engineering, in print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palanker, D. et al. (2007). High-Resolution Opto-Electronic Retinal Prosthesis: Physical Limitations and Design. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds) Artificial Sight. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49331-2_14

Download citation

Publish with us

Policies and ethics