Skip to main content

Fatigue And Fracture Behavior

  • Chapter
Bulk Metallic Glasses

Structural components are frequently subjected to repeated or cyclic loading. The resulting cyclic stresses, which may be far below the ultimate tensile strength of materials, can result in a microscopic physical damage to the material. The microscopic damage can accumulate with continued cyclic loading until it develops into a crack that could lead to the catastrophic failure. This process of damage and failure due to cyclic loading is called fatigue.

Fatigue is a dynamic phenomenon that accounts for ~90% of all service failures from mechanical causes. In general, the fatigue life involves the number of loading cycles to initiate and propagate a crack to a critical size. Fatigue failure occurs in three stages: crack initiation, stable crack growth, and fast fracture. The main factors that contribute to fatigue failures include the number of load cycles, stress range, mean stress, and local stress concentrations. It is necessary to take these factors into account in the design of materials for structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. E. Dowling, Mechanical Behavior of Materials (Prentice-Hall, New Jersey, 1999).

    Google Scholar 

  2. J. Y. Mann, Fatigue of Materials (Melbourne University Press, Australia, 1967).

    Google Scholar 

  3. V. V. Bolotin, Mechanics of Fatigue (CRC, New York, 1999).

    Google Scholar 

  4. . E466, Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials, Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures (Vol. 03.01, ASTM, Philadelphia, PA 1995).

    Google Scholar 

  5. . E467, Standard Practice for Verification of Constant Amplitude Dynamic Loads on Displacements in an Axial Load Fatigue Testing System, Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures (Vol. 03.01, ASTM, Philadelphia, PA 1995).

    Google Scholar 

  6. . E468, Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials, Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures (Vol. 03.01, ASTM, Philadelphia, PA 1995).

    Google Scholar 

  7. H. Tian, D. Fielden, M. J. Kirkham, and P. K. Liaw, Control of noise and specimen temperature during 1 kHz fatigue experiments, J. Test. Eval. 34(2), 92-97 (2006).

    Google Scholar 

  8. W. H. Peter, P. K. Liaw, R. A. Buchanan, C. T. Liu, C. R. Brooks, J. A. Horton, Jr., C. A. Carmichael, Jr., and J. L. Wright, Fatigue behavior of Zr52.5Al10Ti5Cu17.9 Ni14.6 bulk metallic glass, Intermetallics 10, 1125-1129 (2002).

    CAS  Google Scholar 

  9. W. H. Peter, R. A. Buchanan, C. T. Liu, and P. K. Liaw, The fatigue behavior of a zirconium-based bulk metallic glass in vacuum and air, J. Non-Cryst. Solids 317, 187-192 (2003).

    Article  CAS  ADS  Google Scholar 

  10. B. C. Menzel and R H. Dauskardt, Stress-life fatigue behavior of a Zr-based bulk metallic glass, Acta Mater. 54, 935-943 (2006).

    Article  CAS  Google Scholar 

  11. P. A. Hess, B. C. Menzel, and R. H. Dauskardt, Fatigue damage in bulk metallic glass. II. Experiments, Scripta Mater. 54, 355-361 (2006).

    Article  CAS  Google Scholar 

  12. . G. Y. Wang, P. K. Liaw, and M. Denda, unpublished results.

    Google Scholar 

  13. C. J. Gilbert, J. M. Lippmann, and R. O. Ritchie, Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior, Scripta Mater. 38, 537-542 (1998).

    Article  CAS  Google Scholar 

  14. K. M. Flores, W. L. Johnson, and R. H. Dauskardt, Fracture and fatigue behavior of a ZrTi-Nb ductile phase reinforced bulk metallic glass matrix composite, Scripta Mater. 49, 1181-1187 (2003).

    Article  CAS  Google Scholar 

  15. D. C. Qiao, P. K. Liaw, C. Fan, Y. H. Lin, G. Y. Wang, H. Choo, and R. A. Buchanan, Fatigue and fracture behavior of (Zr58Ni13.6Cu18Al10.4)99Nb1 bulk-amorphous alloy, Intermetallics 14, 1043-1050 (2006).

    Article  CAS  Google Scholar 

  16. Y. Yokoyama, N. Nishiyama, K. Fukaura, and H. Sunada, Fatigue properties and microstructures of Zr55Cu30Al10Ni5 bulk glassy alloys, Mater. Trans. JIM 41, 675-680 (2000).

    CAS  Google Scholar 

  17. G. Y. Wang, P. K. Liaw, W. H. Peter, B. Yang, Y. Yokoyama, M. L. Benson, B. A. Green, M. J. Kirkham, S. A. White, T. A. Saleh, R. L. McDaniels, R. V. Steward, R. A. Buchanan, C. T. Liu, and C. R. Brooks, Fatigue behavior of bulk-metallic glasses, Intermetallics 12, 885-892 (2004).

    Article  CAS  Google Scholar 

  18. G. Y. Wang, P. K. Liaw, Y. Yokoyama, W. H. Peter, B. Yang, M. Freels, R. A. Buchanan, C. T. Liu, and C. R. Brooks, Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses, J. Alloys Compd, 434-435, 68-70 (2007).

    Article  CAS  Google Scholar 

  19. G. Y. Wang, P. K. Liaw, A. Peker, M. Freels, W. H. Peter, R. A. Buchanan, and C. R. Brooks, Comparison of fatigue behavior of a bulk metallic glass and its composite, Intermetallics 14, 1091-1097 (2006).

    Article  CAS  Google Scholar 

  20. . G. Y. Wang, P. K. Liaw, A. Peker, Y. Yokoyama, M. Freels, W. Peter, R. Buchanan, and C. Brooks, The effect of frequency on fatigue behavior of bulk metallic glass and compo- sites, presented at The TMS Annual Meeting, San Antonio, TX, (2006), unpublished.

    Google Scholar 

  21. J. Schijve, Fatigue of Structures and Materials (Kluwer, Boston, 2001).

    Google Scholar 

  22. H. Tian, P. K. Liaw, H. Wang, D. Fielden, J. P. Strizak, L. K. Mansur, and J. R. DiStefano, Influence of mercury environment on the fatigue behavior of spallation neutron source (SNS) target container materials, Mater. Sci. Eng. A 314(1-2), 140-149 (2001).

    Article  Google Scholar 

  23. H. Tian, P. K. Liaw, D. E. Fielden, L. Jiang, B. Yang, C. R. Brooks, M. D. Brotherton, H. Wang, J. P. Strizak, and L. K. Mansur, Effects of frequency on fatigue behavior of type 316 low-carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source, Metall. Mater. Trans. A 37(1), 163-173 (2006).

    Article  Google Scholar 

  24. P. A. Hess and R. H. Dauskardt, Mechanisms of elevated temperature fatigue crack growth in Zr-Ti-Cu-Ni-Be bulk metallic glass, Acta Mater. 52, 3525-3533 (2004).

    Article  CAS  Google Scholar 

  25. C. J. Gilbert, R. O. Ritchie, and W. L. Johnson, Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass, Appl. Phys. Lett. 71, 476-478 (1997).

    Article  CAS  ADS  Google Scholar 

  26. . http://www.liquidmetal.com/

  27. H. Choi-Yim, R. Busch, U. Kosster, and W. L. Johnson. Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites, Acta Mater. 47, 2455-2462 (1999).

    Article  CAS  Google Scholar 

  28. R. D. Conner, H. Choi-Yim, and W. L. Johnson, Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites, J. Mater. Res. 14, 3292-3297 (1999).

    Article  CAS  ADS  Google Scholar 

  29. C. C. Hays, C. P. Kim, and W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions, Phys. Rev. Lett. 84, 2901-2904 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. F. Szuecs, C. P. Kim, and W. L. Johnson, Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite, Acta Mater. 49, 1507-1513 (2001).

    Article  CAS  Google Scholar 

  31. C. J. Gilbert, V. Schroeder, and R. O. Ritchie, Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass, Metall. Mater. Trans. A 30, 1739-1753 (1999).

    Article  Google Scholar 

  32. G. Y. Wang, P. K. Liaw, A. Peker, B. Yang, M. L. Benson, W. Yuan, W. H. Peter, L. Huang, M. Freels, R. A. Buchanan, C. T. Liu, and C. R. Brooks, Fatigue behavior of Zr-Ti-Ni-Cu-Be bulk-metallic glasses, Intermetallics 13, 429-435 (2005).

    Article  CAS  Google Scholar 

  33. G. Y. Wang, P. K. Liaw, W. H. Peter, B. Yang, M. Freels, Y. Yokoyama, M. L. Benson, B. A. Green, T. A. Saleh, R. L. McDaniels, R. V. Steward, R. A. Buchanan, C. T. Liu, and C. R. Brooks, Fatigue behavior and fracture morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 bulk-metallic glasses, Intermetallics, 12, 1219-1227 (2004).

    CAS  Google Scholar 

  34. Y. Yokoyama, P. K. Liaw, M. Nishijima, K. Hiraga, R. A. Buchanan, and A. Inoue, Fatigue-strength enhancement of cast Zr50Cu40Al10 glassy alloys, Mater. Trans. JIM 47, 1286-1293 (2006).

    Article  CAS  Google Scholar 

  35. . W. H. Peter, Fatigue Behavior of A Zirconium-Based Bulk Metallic Glass, Dissertation (2005).

    Google Scholar 

  36. M. Freels, P. K. Liaw, G. Y. Wang, Q. S. Zhang, and Z. Q. Hu, Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass, J. Mater. Res. 22, 374-381 (2007).

    Article  CAS  ADS  Google Scholar 

  37. R. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (Wiley, New York, 1989).

    Google Scholar 

  38. . Structural Alloys Handbook (Mechanical Properties Data Center, Traverse City, MI, 1977).

    Google Scholar 

  39. ASM Handbook, Properties and Selections: Nonferrous Alloys and Special Purpose Materials (Vol. 2, ASM, Metals Park, OH, 1990).

    Google Scholar 

  40. . Metals Handbook, 9th ed. (Vol. 2, American Society for Metals, Metals Park, OH, 1979).

    Google Scholar 

  41. Z. F. Zhang, J. Eckert, and L. Schultz, Fatigue and fracture behavior of bulk metallic glass, Metall. Mater. Trans. A 35, 3489-3498 (2004).

    Article  Google Scholar 

  42. M. L. Morrison, R. A. Buchanan, P. K. Liaw, B. A. Green, G. Y. Wang, C. T. Liu, and J. A. Horton, “Four-point bending fatigue behavior of the Zr-based Vitreloy 105 bulk metallic glass.” Mater. Sci. Eng. A 467(1-2), 190-197 (2007).

    Article  CAS  Google Scholar 

  43. K. N. Smith, P. Watson, and T. H. Topper, A stress-strain function for the fatigue of metals, J. Mater. 5, 767-778 (1970).

    Google Scholar 

  44. H. Zhang, Z. G. Wang, K. Q. Qiu, Q. S. Zang, and H. F. Zhang, Cyclic deformation and fatigue crack propagation of a Zr-based bulk amorphous metal, Mater. Sci. Eng. A 356, 173-180 (2003).

    Article  CAS  Google Scholar 

  45. P. K. Liaw T. R. Leax, and W. A. Logsdon, Near-threshold fatigue crack-growth behavior in metals, Acta Metall. 31, 1581-1587 (1983).

    Article  CAS  Google Scholar 

  46. P. K. Liaw, A. Saxena, V. P. Swaminathan, and T. T. Shih, Effects of load ratio and temperature on the near-threshold fatigue crack-propagation behavior in a CrMoV steel, Metall. Trans. A 14(8), 1631-1640 (1983).

    Article  Google Scholar 

  47. L. J. Chen, P. K. Liaw, R. L. McDaniels, and D. L. Klarstrom, The low-cycle fatigue and fatigue-crack-growth behavior of HAYNES (R) HR-120 alloy, Metall. Mater. Trans. A 34 (7), 1451-1460 (2003).

    Article  Google Scholar 

  48. L. Jiang, H. Wang, P. K. Liaw, C. R. Brooks, and D. L. Klarstrom, Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling, Metall. Mater. Trans. A 32(9), 2279-2296 (2001).

    Article  Google Scholar 

  49. H. Wang, L. Jiang, P. K. Liaw, C. R. Brooks, and D. L. Klarstrom, Infrared temperature mapping of ULTIMET alloy during high-cycle fatigue tests, Metall. Mater. Trans. A 31, 1307-1310 (2000).

    Article  Google Scholar 

  50. P. K. Liaw, H. Wang, L. Jiang, B. Yang, J. Y. Huang, R. C. Kuo, and J. G. Huang, Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz, Scripta Mater. 42, 389-395 (2000).

    Article  CAS  Google Scholar 

  51. B. Yang, P. K. Liaw, G. Wang, W. H. Peter, R. A. Buchanan, Y. Yokoyama, J. Y. Huang, R. C. Kuo, J. G. Huang, D. E. Fielden, and D. L. Klarstrom, Thermal-imaging technologies for detecting damage during high-cycle fatigue, Metall. Mater. Trans. A 35 (1), 15-23 (2004).

    Article  Google Scholar 

  52. L. Jiang, H. Wang, P. K. Liaw, C. R. Brooks, L. Chen, and D. L. Klarstrom, Temperature evolution and life prediction in fatigue of superalloys, Metall. Mater. Trans. A 35(3), 839-848 (2004).

    Article  Google Scholar 

  53. B. Yang, P. K. Liaw, G. Wang, M. Morrison, C. T. Liu, R. A. Buchanan, and Y. Yokoyama, In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments, Intermetallics 12(10-11): 1265-1274 (2004).

    CAS  Google Scholar 

  54. C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton, and A. Inoue. Test environment and mechanical properties of Zr-base bulk amorphous alloys, Metall. Mater. Trans. A 29, 1811-1820 (1998).

    Article  Google Scholar 

  55. C. Laird, Fatigue Crack Propagation (ASTM, Philadelphia, PA. 1967).

    Google Scholar 

  56. P. E. Donovan and W. M. Stobbs, The structure of shear bands in metallic glasses, Acta Metall. 29, 1419-1436 (1981).

    Article  CAS  Google Scholar 

  57. P. S. Steif, F. Spaepen, and J. W. Hutchinson, Strain localization in amorphous metals, Acta Metall. 30, 447-455 (1982).

    Article  CAS  Google Scholar 

  58. Z. F. Zhang, J. Eckert, and L. Schultz, Tensile and fatigue fracture mechanisms of a Zrbased bulk metallic glass, J. Mater. Res. 18(2), 456-465 (2003).

    Article  CAS  ADS  Google Scholar 

  59. K. K. Cameron and R. H. Dauskardt, Fatigue damage in bulk metallic glass. I. Simulation, Scripta Mater. 54, 349-353 (2006).

    CAS  Google Scholar 

  60. G. Y. Wang, P. K. Liaw, A. Peker, Y. Yokoyama, W. H. Peter, B. Yang, M. L. Benson, W. Yuan, L. Huang, M. Freels, R. A. Buchanan, C. T. Liu, and C. R. Brooks, Fatigue behavior of Zr-based bulk metallic glasses (BMG), The TMS Annual Meeting, Charlotte, North Carolina (2004).

    Google Scholar 

  61. . E399, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures (Vol. 03.01, ASTM, Philadelphia, PA 1995).

    Google Scholar 

  62. J. J. Lewandowski, W. H. Wang, and A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85, 77-87 (2005).

    Article  CAS  ADS  Google Scholar 

  63. J. Schroers, W. L. Johnson, Ductile bulk metallic glass, Phys. Rev. Lett. 93, 255506 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, G., Liaw, P. (2008). Fatigue And Fracture Behavior. In: Miller, M., Liaw, P. (eds) Bulk Metallic Glasses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48921-6_7

Download citation

Publish with us

Policies and ethics