Skip to main content

Mercury’ Exosphere

  • Chapter
Dynamic Planet
  • 482 Accesses

Abstract

An exosphere is an ensemble of atoms or molecules above a planet’ surface or atmosphere for which the mean free path is greater than the scale height (the e-folding height for density). Because collisions are rare in an exosphere, each constituent maintains its own distribution, defined by its unique combination of source energy and distribution, mass, radiation pressure and loss processes (e.g. Jeans escape, photo-dissociation; adsorption; ionization; surface chemistry). Killen and Ip (1999) give a good discussion of this concept, and many additional references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoniadi, Eugene, Laplanete Mercure et la Rotation des Satellites, (Publ. Paris, Gauthier-Villars) 1934.

    Google Scholar 

  • Banks P.M., H.E. Johnson, and W.I. Axford, The atmosphere of Mercury, Astrophys. Space Phys., 2,214–220, 1970.

    Google Scholar 

  • Bida T.A., R.M. Killen, and T.H. Morgan, Discovery of calcium in Mercury’ atmosphere, Nature 404, 159–161, 2000.

    Article  ADS  Google Scholar 

  • Broadfoot A.I., S. Kumar, M.J. Belton, and J.B. McElroy, Mercury’ atmosphere from Mariner-10. Preliminary results. Science 185, 166–169, 1974.

    Article  ADS  Google Scholar 

  • Broadfoot A.I., J.E. Shemansky, and S. Kumar, Mariner-10 Mercury atmosphere, GRL, 3, 577–580, 1976.

    Article  ADS  Google Scholar 

  • Chamberlain J.W. and D.M. Hunten, Theory of Planetary Atmospheres, 2nd Ed. (Publ. Academic Press), 481 p., 1987.

    Google Scholar 

  • Chang J., and H. Kelly, Photoabsorption of the neutral sodium atom: a many-body calculation, Phys Rev A, 12, 92–98, 1975.

    Article  ADS  Google Scholar 

  • Cheng A., R. Johnson, S. Krimigis, L. Lanzaroti, Magnosphere, exosphere and surface of Mercury, Icarus, 71,430–440, 1987.

    Article  ADS  Google Scholar 

  • Christon S., 1987, A comparison of the Mercury and Earth magnetospheres: electron measurements and substorm time scales, Icarus, 71,448–471, 1987.

    Article  ADS  Google Scholar 

  • Cintala M.J., Impact induced thermal effects in the lunar and Mercurian regoliths,JGR,97, 947–973, 1992.

    Article  ADS  Google Scholar 

  • Combi M., M. DiSanti, and U. Fink, The spatial distribution of gaseous atomic sodium in the comae of comets: evidence for direct nucleus and extended plasma sources, Icarus, 130, 336–354, 1997.

    Article  ADS  Google Scholar 

  • Cremonese G., M. Capria, V. Achilli, F. Angrilli, P. Baggio, C. Barbieri, J. Baumgardner, N. Bistacchi, F. Capaccioni, A. Caporali, I. Casanova, S. DeBei, G. Farlani, S. Fornaier, D. Hunten, W. Ip, M Lazzarin, I. Longhi, L. Marinangeli, F. Marzari, P. Massironi, P. Masson, M. Mendillo, B. Pain, G. Preti, R. Ragazzoni, J. Taitala, G. Salemi, M. Sgavetti, A. Sprague, E. Suetta, M. Tordi, S. Verani, J. Wilson, L. Wilson, MEMORIS: a wide angle camera for the BepiColombo mission, Advances in Space Research, 33, Mercury, Mars and Saturn, 2182–2188, 2004.

    Google Scholar 

  • Curtis S.A. and R. Hartle, Mercury’ Helium exosphere after Mariner 10’ third encounter, JGR Space Physics, 83, 1551–1557, 1987.

    Article  ADS  Google Scholar 

  • Ding C., T. Hill, B. Ramaswamy, Modeling and mapping of electric potential on closed field lines, in Physics of Space Plasmas, #14, Ed., T. Chang, J. Jasperse, MIT center for theoretical Geo/Cosmo Plasma Physics, Cambridge, MA, 645, 1996.

    Google Scholar 

  • Fink U., H.P. Larson, and R.F. Popper A new upper limit for an atmosphere of CO2, CO on Mercury Astrophys J, 187,407–415, 1974.

    Article  ADS  Google Scholar 

  • Fjelbo G.A. and F. Kilore The occultation of Mariner 10 by Mercury Icarus, 29,407–415, 1976.

    Google Scholar 

  • Flynn B. and M. Mendillo, Simulations of the lunar sodium atmosphere, JGR, 100,23271–23278, 1995.

    Article  ADS  Google Scholar 

  • Goettel K., Present bounds on the bulk composition of Mercury: Implications for planetary formation processes, in Mercury, Ed. Vilas, Chapman, Metthews, 613–621, U. Arizona Press, Tucson, 1988.

    Google Scholar 

  • Goldstein B., S. Suess, R. Walker, Mercury: Magnetospheric processes and the atmospheric supply and loss rates, JGR, 86, 5845–5899, 1981.

    ADS  Google Scholar 

  • Grard R., Photoemission on the surface of Mercury and related electrical phenomena, Plan Space Sci, 45, 67–72, 1997.

    Article  ADS  Google Scholar 

  • Hartle R., K. Ogilvie, C. Wu, Neutral and ion-exospheres in the solar wind with applications to Mercury, Plan Space Sci, 21,2181–2191, 1973.

    Article  ADS  Google Scholar 

  • Hartle R.E., S. A. Curtis, G.E. Thomas, Mercury’ helium exosphere, JGR, 80, 3689–3692, 1975.

    Article  ADS  Google Scholar 

  • Hartle R.E. and R.M. Killen, Measuring pickup ions to characterize the surfaces and exospheres of planetary bodies: Applications to the Moon, GRL,33, 5,L05201,2006.

    Google Scholar 

  • Hodges R., Model atmospheres for Mercury based on a lunar analogy, JGR., 79,2881–2885, 1974.

    Article  ADS  Google Scholar 

  • Hodges R., Methods for Monte Carlo simulation of the exospheres of the Moon and Mercury, JGR, 85, 164–170, 1980.

    Article  ADS  Google Scholar 

  • Huebner W.F., J.J. Keady and J.P. Lyon, Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci. 195, 1–294, 1992.

    Article  ADS  Google Scholar 

  • Hunten D.M., T.H. Morgan and D.H. Shemansky, The Mercury Atmosphere in Mercury, Eds. Vilas, Chapman, and Matthews, (Publ. Univ. of Arizona, Press, Tucson, 562–612, 1988.

    Google Scholar 

  • Ip W., The sodium exosphere and magnetosphere of Mercury; GRL, 13, 423–426, 1986.

    Article  ADS  Google Scholar 

  • Ip W., Dynamics or electrons and ions in Mercury;’ magnetosphere, Icarus, 71,441–447, 1987.

    Article  ADS  Google Scholar 

  • Kabin K. and T. Gombosi et al, Interaction of Mercury with the solar wind, Icarus, 143, 397–406, 2000.

    Article  ADS  Google Scholar 

  • Kallio E. and P. Janhunen, The response of the Hermean magnetosphere to the interplanetary magnetic field, Adv in Space Research, 33,2176–2181, 2004.

    Article  ADS  Google Scholar 

  • Killen R.M., J. Benkhoff, and T.H. Morgan, Mercury’ polar caps and the generation of an OH exosphere, Icarus, 125, 195–211, 1997.

    Article  ADS  Google Scholar 

  • Killen R.M., T.A. Bida, T.H. Morgan, Calcium Exosphere of Mercury, Icarus, 173(2), 300–311, 2005.

    Article  ADS  Google Scholar 

  • Killen R.. and W. Ip, The surface bounded atmospheres of Mercury and the Moon, Reviews ofGeophys. 37(3) 361–406, 1999.

    Article  ADS  Google Scholar 

  • Killen R. and T. Morgan, Maintaining the Na Atmosphere of Mercury, Icarus, 101(2): 293–312, 1993.

    Article  ADS  Google Scholar 

  • Killen R. and T. Morgan, Diffusion of Na and K in the uppermost regolith of Mercury, JGR, 98,23589–23601, 1993.

    Article  ADS  Google Scholar 

  • Killen R.M., A.E. Potter, and T.H. Morgan, Spatial distribution of sodium vapor in the atmosphere of Mercury, Icarus, 85,145–167, 1990.

    Article  ADS  Google Scholar 

  • Killen R.M., A.E. Potter, A. Fitzsimmons, and T.H. Morgan, Sodium D2 line profiles. Clues to the temperature structure of Mercury’ exosphere, Planet. Space Sci. 47, 1449–1458, 1999.

    Article  ADS  Google Scholar 

  • Killen RM, A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, B. Giles, Evidence for space weather at Mercury, JGR Planets 106(E9): 20509–20525, 2001.

    Article  ADS  Google Scholar 

  • Killen R.A., M. Sarantos, P. Reiff, Space Weather at Mercury, Adv Space Research, 33, 1899–1904, 2004.

    Article  ADS  Google Scholar 

  • Kumar S., Mercury’ atmosphere. A perspective after Mariner 10. Icarus 28, 579–592, 1976.

    Article  ADS  Google Scholar 

  • Laakso H., H. Koskinen, T. Pulkkinen, R. Grard, Electric current systems in the MI. Mercury magnetosphere, Abstract, EOS Trans. AGU, 78(46), Fall Meeting, Fall. Meeting Suppl, 1997.

    Google Scholar 

  • Lammer H., P. Wurz, M. Patel, R.M. Killen, C. Kolb, S. Massetti, S. Orsini, A. Milillo, The variability of Mercury’ exosphere by particle and radiation induced surface release processes, Icarus, 166,238–247, 2003.

    Article  ADS  Google Scholar 

  • LeBlanc F., D. Delcourt, R.E. Johnson, Mercury’ sodium exosphere: Magnetospheric ion recycling, JGR Planets, 108, E12, #5136,72003.

    Google Scholar 

  • Lewis J.S., Metal/silicate fractionation in the solar system Earth Plan Sci Lett, 15, 286–290, 1972.

    Article  ADS  Google Scholar 

  • Lewis J.S., Physics and Chemistry of the Solar System, 2nd Ed. (Publ. Elsevier), 655p., 2004.

    Google Scholar 

  • Madey T.E., B.V. Yakshinskiy, V.N. Ageev, and R.E. Johnson, Desorption of alkali atoms and ions from oxide surfaces: relevance to origins of Na and K in the atmospheres of Mercury and the Moon, JGR, 103, 5873–5887, 1998.

    Article  ADS  Google Scholar 

  • Massetti S., S. Orsini, A. Milillo, S. Orsini, A. Mura, E. De Angelis, H. Lammer, P. Wurz,, Mapping of the cusp plasma precipitation on the surface of Mercury, Icarus, 166,229–237, 2003.

    Article  ADS  Google Scholar 

  • McGrath M.A., R.E Johnson, and L.J. Lanzerotti, Sputttering of sodium on the planet Mercury, Nature, 323, 694–696, 1986.

    Article  ADS  Google Scholar 

  • Morgan T.H. and R.M. Killen, A non-stoichiometric model of the composition of the atmospheres of Mercury and the Moon, Planet. Space Sci. 45(1), 81–84, 1997.

    Article  ADS  Google Scholar 

  • Morgan T.H. and A.E. Potter, Distributions of sodium and potassium vapor on Mercury, Bull. Amer. Astron. Soc. 24957, 1992.

    Google Scholar 

  • Morgan T.H. and D.E. Shemansky, Limits to the lunar atmosphere, JGR Planets, 96, 1351–1367, 1991.

    Article  ADS  Google Scholar 

  • Morgan T.H., H.A. Zook, and A.E. Potter, Impact-driven supply of sodium and potassium to the atmosphere of Mercury, Icarus 75, 156–170, 1988.

    Article  ADS  Google Scholar 

  • Moses J., K. Rawlins, K. Zahnle, External sources of water for Mercury’ putative ice deposits, Icarus, 137(2), 197–221, 1999.

    Article  ADS  Google Scholar 

  • Ogilvie K., J. Scudder, V. Vasyliunas, R. Hartle, G. Siscoe, Observations at the planet Mercury by the plasma electron experiment: Mariner 10, JGR, 82, 1807–1824, 1977.

    Article  ADS  Google Scholar 

  • Pierce K., Construction of a Bowen image slicer, Publ. Astron. Soc. Pac. 77, 216–217, 1965.

    Article  ADS  Google Scholar 

  • Potter A.E., in Proc. Workshop on Sodium Atmospheres, Exospheres and Coronae in the Solar System (Publ. Sun Juan, California), 25, 1993.

    Google Scholar 

  • Potter A.E., Chemical sputtering could produce sodium vapor and ice on Mercury, GRL, 22, 3289–3292, 1995.

    Article  ADS  Google Scholar 

  • Potter AE, C. Anderson, R. Killen, T. Morgan, Ratio of sodium to potassium in the Mercury exosphere, JGR Planets, 107, doi:10.1029/2000JE001493,2002.

    Google Scholar 

  • Potter A. E. and T.H. Morgan, Discovery of sodium in the atmosphere of Mercury, Science, 229, 651–653, 1985.

    Article  ADS  Google Scholar 

  • Potter A.E. and T.H. Morgan, Potassium in the atmosphere of Mercury, Icarus, 67,336–340, 1986.

    Article  ADS  Google Scholar 

  • Potter A.E. and T.H. Morgan, Variation of sodium on Mercury, with solar radiation pressure, Icarus, 71, 472–477, 1987.

    Article  ADS  Google Scholar 

  • Potter A.E. and T.H. Morgan, Discovery of sodium and potassium vapor in the atmosphere of the Moon, Science, 241, 675–680, 1988.

    Article  ADS  Google Scholar 

  • Potter A.E. and T.H. Morgan, Evidence for magnetospheric effects on the sodium atmosphere of Mercury, Science, 248, 835–838, 1990.

    Article  ADS  Google Scholar 

  • Potter A.E. and T.H. Morgan, Evidence for suprathermal sodium atmosphere of Mercury, Adv. Space Res., 19(10), 1571–1576, 1997.

    Article  ADS  Google Scholar 

  • Potter A. and T.H. Morgan, Sodium and potassium atmospheres of Mercury, Planet Space Sci, 45, 95–100, 1997.

    Article  ADS  Google Scholar 

  • Potter A.E., R.M. Killen, and T.H. Morgan, Rapid changes in the sodium exosphere of Mercury, Planet. Space Sci., 47, 1441–1448, 1999.

    Article  ADS  Google Scholar 

  • Potter A.E., R.M. Killen, and T.H. Morgan, The sodium tail of Mercury, Meteor.and Planet. Sci,. 37, 1165–1172, 2002.

    Article  ADS  Google Scholar 

  • Potter A.E., R.M. Killen, and M. Sarantos, Spatial distribution of Sodium on Mercury, Icarus, 181(1), 1–12, 2006.

    Article  ADS  Google Scholar 

  • Samson J., Atomic photoionization, in Encyclopedia of Physics, 31, Ed S. Flugg, 123–213, Springer-Verlag, New York, 1982.

    Google Scholar 

  • Sarantos M., P. Reiff, T. Hill, R. Killen, A. Urquhart, A Bx interconnected magnetosphere model for Mercury, Planet Space Sci, 49, 1629–1635, 2001.

    Article  ADS  Google Scholar 

  • Shao Y. and J. Paul, TPD studies of the interaction of D2O and Na with clean and oxidized Al (100) surfaces, Appl Surf Sci., 72,113–124, 1993.

    Article  ADS  Google Scholar 

  • Schultz P., Cratering on Mercury: A relook. In Mercury, Vilas, Chapman, Matthews, Eds., U. Arizona Press, 274–335, 1988.

    Google Scholar 

  • Shemansky D.E. and T.H. Morgan, Source processes for the alkali metals in the atmosphere of Mercury, GRL, 18,1659–1662, 1991.

    Article  ADS  Google Scholar 

  • Shemansky D., Revised atmospheric species abundances at Mercury: The debacle of bad g values, The Mercury Messenger, 1, Issue 2, 1988.

    Google Scholar 

  • Shemansky D.H. and A.I. Broadfoot, Interaction of thee surfaces of the Moon and Mercury with their exospheric atmospheres, Rev. Geophys, 15, 491–400, 1977.

    Article  ADS  Google Scholar 

  • Sigmund P., Sputtering by ion bombardment, in Theoretical concepts, in Sputtering by particle bombardment I, ed. R. Behrisch, 9–72, Springer-Verlag, New York, 1981.

    Google Scholar 

  • Slavin J.A. and R.E. Holzer The effect of erosion on the solar wind stand off distance at Mercury, JGR Space Physics, 84,2976–2082, 1979.

    Google Scholar 

  • Slavin J., Mercury’ Magnetosphere, Adv Space Research, 33, 1859–1874, 2004.

    Article  ADS  Google Scholar 

  • Smith G.R., D.E. Shemansky, A. Lyle, L. Wallace, Monte Carlo modeling of exospheric bodies: Mercury, JGR Space Physics, 83, 3783–3790, 1978.

    Article  Google Scholar 

  • Smyth W., Nature and variability of Mercury’ sodium atmosphere, Nature, 323, 696–699.1986.

    Article  ADS  Google Scholar 

  • Smyth, William H. and M.L. Marconi, Theoretical overview and modeling of the sodium and potassium atmospheres of Mercury, Astrophys. J., 441(2), Part 1, 839–864, 1995.

    Article  ADS  Google Scholar 

  • Sprague A.L., R.W. Kozlowski, and D.M. Hunten, Caloris Basin: An enhanced source for potassium in Mercury/s atmosphere, Science, 249, 1140–1143, 1990.

    Article  ADS  Google Scholar 

  • Sprague A.I., R.W. Koslovski, D.M. Hunten and F.A. Grosse, An upper limit on neutral calcium in Mercury’ atmosphere, Icarus, 104, 33–37, 1993.

    Article  ADS  Google Scholar 

  • Sprague A.I., R.W. Kozlowski, and D.M. Hunten, An upper limit on neutral calcium in Mercury’ atmosphere, Icarus, 104, 33–37, 1995a.

    Article  ADS  Google Scholar 

  • Sprague A.I., D.M. Hunten and R. Lodders, Sulfur at Mercury, Elemental at the poles and sulfides in the regolith, Icarus, 118,211–215, 1995b.

    Article  ADS  Google Scholar 

  • Sprague A.I., D.M. Hunten, and R. Lodders, Sulfur and Mercury: Elemental at the poles and sulfides in the regolith. Erratum, Icarus, 123, p. 247, 1996.

    Article  ADS  Google Scholar 

  • Sprague A.I., D. Hunten, R. Kozlowski, F. Grosse, R. Hill, R. Morris, Observations of the sodium in the lunar atmosphere during International Lunar Atmosphere Week, 1995, Icarus, 131,372–381, 1998.

    Article  ADS  Google Scholar 

  • Sprague et al, upper limit for lithium in Mercury’ atmosphere, Icarus, 123, 345–349, 1996.

    Article  ADS  Google Scholar 

  • Stern S.A., A. Fitzsimmons, R.M. Killen, and A.E. Potter, A direct measurement of sodium temperature in the lunar exosphere, in Lun. Plan Sci.XXXI, 1122.pdf, 2000.

    Google Scholar 

  • Thompson M. Energy spectrum of ejected atoms during high energy sputtering of gold, Phil. Mag., 18, 306–314, 1968.

    Google Scholar 

  • Toffoletto F.R., T.W. Hill, A nonsingular model of the open magnetosphere. JGR, 98,1339–1344, 1993.

    Article  ADS  Google Scholar 

  • Wurz P, H. Lammer, Monte Carlo Simulation of Mercury’ Exosphere, Icarus, 164(1), 1–13, 2003.

    Article  ADS  Google Scholar 

  • Zollner, Johann Karl Friedrich, Photometrische Untersuchungen uber die physische Beschaffenheit des Planetem Mercur (Photometric researches on the physical condition of the planet Mercury) in Poggendorf’ Jubelband, 1874.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Mercury’ Exosphere. In: Dynamic Planet. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48214-9_5

Download citation

Publish with us

Policies and ethics