Skip to main content

Materials and Processes in Shape Memory Alloy

  • Chapter
  • First Online:
MEMS Materials and Processes Handbook

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 1))

Abstract

Actuators are a key factor of micro electro mechanical systems (MEMS). In particular, shape memory alloy (SMA) is an effective material for microactuators to generate large force and large displacement. In this chapter, basic properties of SMA materials, fabrication processes of bulk and thin film SMA actuators, and application devices (medical devices, fluidic devices, switches, tactile displays and cantilevers for atomic force microscopy (AFM)) are described. Microactuators of SMA have some disadvantages such as difficulty to batch fabricate and assemble, high electric power for thermal driving, and low controllability of displacement. In this chapter, integration techniques with other MEMS technologies to overcome the disadvantages of SMA actuators also are described with introductions of typical application devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 319.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup: Thin film shape memory alloy microactuators, J. Microelectromech. Syst. 5(4), 270–281 (1996)

    Article  Google Scholar 

  2. K. Otsuka C.M. Wayman: Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  3. J.A. Walker, K.J. Gabriel: Thin-film processing of TiNi shape memory alloy, Sens. Actuators, A21–A23, 243–246 (1990)

    Article  Google Scholar 

  4. K. Kuribayashi, M. Yoshitake, S. Ogawa: Reversible SMA Actuator for Micron Sized Robot, Proceedings of the IEEE Micro Electro Mechanical Systems. MEMS, pp. 217–221 (Napa Valley, CA, USA, 1990)

    Google Scholar 

  5. A.D. Johnson: Vacuum-deposited TiNi shape memory film: Characterization and applications in microdevices, J. Micromech. Microeng. 34–41 (1991)

    Google Scholar 

  6. S. Miyazaki, A. Ishida: Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films, Mater. Sci. Eng. A 273–275, 106–133 (1999)

    Google Scholar 

  7. M. Kohl: Shape Memory Microactuator (Springer, New York, NY, 2004)

    Google Scholar 

  8. Y. Haga, M. Mizushima, T. Matsunaga, M. Esashi: Medical and welfare applications of shape memory alloy microcoil actuators, Smart Mater. Struct. 14(5), S266–S272 (2005)

    Article  Google Scholar 

  9. W.C. Crone, A.N. Yahya, J.H. Perepezko: Bulk shape memory NiTi with refined grain size synthesized by mechanical alloying, Mater. Sci. Forum 386–388, 597–602 (2002)

    Article  Google Scholar 

  10. D. Tomus, K. Tsuchiya, T. Nagano, A. Hosokawa, T. Ohmori, M. Sasaki, Y. Todaka, M. Umemoto: Influence of heat treatment on phase transformation of Ni-rich TiNi foils produced via ultrafine laminates, Mater. Trans. 45(2), 219–224 (2004)

    Article  Google Scholar 

  11. N. Miyano, K. Tagaya, K. Kawase, K. Ameyama, S. Sugiyama: Fabrication of alloy and ceramic microstructures by LIGA-MA-SPS process, Sens. Actuators A, 108(1–3), 250–257 (2003)

    Google Scholar 

  12. J.D. Busch, A.D. Johonson: A shape-memory properties in Ni-Ti sputter-deposited film, J. Appl. Phys. 68(12), 6224–6228 (1990)

    Article  Google Scholar 

  13. A. Ishida, S. Miyazaki: Microstructure and mechanical properties of sputter-deposited Ti-Ni alloy thin films, J. Eng. Mater. Technol. 121, 3–8 (2004)

    Google Scholar 

  14. Y. Nakamura, S. Nakamura, L. Buchaillot, M. Ataka, H. Fujita: Tow thin film shape memory alloy microactuators, Trans. IEE Jpn. 117-E(11), 554–559 (1997)

    Google Scholar 

  15. S. Miyazaki, K. Nomura: Development of Perfect Shape Memory Effect in Sputter-Deposited Ti-Ni Thin Films, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS-94), Oiso, Japan, pp. 176–181 (1994)

    Google Scholar 

  16. S. Miyazaki, K. Nomura, A. Ishida, S. Kajiwara: J. Physique IV France 7, Colloque C5, supplement au J. Phys. III, C5-275–280 (1997)

    Google Scholar 

  17. A. Ishida, A. Takei, M. Sato, S. Miyazaki: Shape Memory Behavior of Ti-Ni Thin Films Annealed at Various Temperatures, Materials Research Society Symposium, Proceedings, Vol. 360, pp. 381–386 (1995)

    Article  Google Scholar 

  18. A. Ishida, A. Takei, S. Miyazaki: Shape memory thin film of Ti-Ni formed by sputtering, Thin Solid Films 228, 210–214 (1993)

    Article  Google Scholar 

  19. P. Krulevitch, P.B. Ramsey, D.M. Makowiecki, A.P. Lee, M.A. Northrup, G.C. Johnson: Mixed-sputter deposition of Ni-Ti-Cu shape memory films, Thin Solid Films 274, 101–105 (1996)

    Article  Google Scholar 

  20. A. Ohta, S. Bhansali, I. Kishimoto, A. Umeda: Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets, Sens. Actuators 86, 165–170 (2000)

    Article  Google Scholar 

  21. E. Makino, M. Uenoyama, T. Shibata: Flash evaporation of TiNi shape memory thin film for microactuators, Sens. Actuators A71, 187–192 (1998)

    Article  Google Scholar 

  22. T. Mineta, K. Hirota, E. Makino, T. Sugawara, S. Toh, T. Shibata: Shape memory thin film for blood vessel holding actuator of thrombus detector, Key Eng. Mater. 297–300, 244–249 (2005)

    Article  Google Scholar 

  23. T. Mineta, K. Kasai, Y. Sasaki, E. Makino, T. Kawashima, T. Shibata: Flash-Evaporated TiNiCu thick film for shape memory alloy micro actuator, Microelectron. Eng. 86, 1274–1277 (2009)

    Article  Google Scholar 

  24. K. Ikuta, M. Hayashi, T. Matsuura: Shape Memory Alloy Thin Film Fabricated by Laser Abration, Proceedings of the IEEE Micro Electro Mechanical System, pp. 355–360 (Oiso, Japan, 1994)

    Google Scholar 

  25. Y. Furuya, M. Matsumoto, H. Kimura, K. Aoki, T. Masumoto: Thermo-mechanical phase transformation of rapidly quenched Ti-Ni-Cu ribbons, Mater. Trans. JIM, 31(6), 504–508 (1990)

    Google Scholar 

  26. T. Mineta, M. Abe, H. Kubo, E. Makino, T. Shibata: Fabrication of TiNi 3D Micro Structures from Evaporated Thin Film Tube, Asia-Pacific Conference of Transducers and Micro-Nano Technology, pp. 322–325 (APCOT-MNT 2004 Sapporo, Japan, 2004)

    Google Scholar 

  27. P. John, S. Buenconsejo, K. Ito, H.Y. Kim, S. Miyazaki: High-strength superelastic Ti-Ni microtubes fabricated by sputter deposition, Acta Mater. 56(9), 2063–2072 (2008)

    Article  Google Scholar 

  28. M. Komatsubara, T. Namazu, H. Nagasawa, T. Tsurui, S. Inoue: Cylindrical film deposition system for three-dimensional titanium–nickel shape memory alloy microstructure, Vacuum 83, 703–707 (2009)

    Article  Google Scholar 

  29. K. Weinerta V. Petzoldt: Machining NiTi micro-parts by micro-milling, Mater. Sci. Eng. A 481–482, 672–675 (2008)

    Google Scholar 

  30. Y. Shida, Y. Sugimoto: Water jet erosion behaviour of Ti-Ni binary alloys, Wear 146(2), 219–228 (1991)

    Article  Google Scholar 

  31. K. Hara, K. Hane, M. Sasaki, M. Kohl: Si Micromechanical Fiber-Optic Switch with Shape Memory Alloy Microactuator, Proceedings of the Solid-State Sensors and Actuators (Transducers’99), pp. 790–793 (Sendai, Japan, 1999)

    Google Scholar 

  32. H.C. Lin, K.M. Lin Y.C. Chen: The laser machining characteristics of TiNi shape memory alloys, High Temp. Mater. Process. 3(4), 409–420 (1999)

    Google Scholar 

  33. C. Li, S. Nikumb, F. Wong: An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices, Opt. Lasers Eng. 44(10), 1078–1087 (2006)

    Article  Google Scholar 

  34. H.C. Lin, K.M. Lin, I.S. Cheng: The electro-discharge machining characteristics of TiNi shape memory alloys, J. Mater. Sci. 36(2), 399–404 (2001)

    Article  Google Scholar 

  35. D. Reynaerts, J. Peirs, H.V. Brussel: Shape memory micro-actuation for a gastro-intestinal intervention system, Sens. Actuators A 77(2), 157–166 (1999)

    Article  Google Scholar 

  36. S. Nakamura, Y. Nakamura, M. Ataka, H. Fujita: A study on patterning method of TiNi shape memory thin film, Trans. IEE Jpn. 117-E(1), 27–32 (1997)

    Google Scholar 

  37. D.M. Allen, T.T. Chen: The Electrochemical micromachining of microactuator devices from sputtered NiTi thin film, Electrochem. Soc. Proc. 97–95, 72–78 (1997)

    Google Scholar 

  38. M. Kohl, E. Quandt, A. SchBler, R. Trapp, D.M. Allen: Characterization of NiTi Shape Memory Microdevices Produced by Microstructuring of Etched Sheets or Sputter Deposited Films, Proceedings of 4th New Actuators (Actuator’94), Bremen, Germany, pp. 317–320 (1994)

    Google Scholar 

  39. T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga M. Esashi: An active guide wire with shape memory alloy bending actuator fabricated by room temperature process, Sens. Actuators A, 97–98C, 632–637 (2002)

    Google Scholar 

  40. T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, M. Eshi: Batch fabricated flat meandering shape memory alloy actuator for active catheter, Sens. Actuators A, 88, 112–120 (2000)

    Google Scholar 

  41. T. Mineta: Electrochemical etching of NiTi shape memory alloy sheet using new electrolyte solutions, J. Micromech. Microeng. 14, 76–80 (2004)

    Article  Google Scholar 

  42. T. Mineta, Y. Haga, M. Esashi: Electrochemical Etching of Shape Memory Alloy Using New Electrolyte Solutions, Proceedings of 15th IEEE International Micro Electro Mechanical Systems Conference (MEMS2002), pp. 376–379 (Las Vegas, NV, USA, 2002)

    Google Scholar 

  43. S. Ballandras, M. Calin, S. Zissi, A. Bertsch, J.C. Andre, D. Hauden: Microstereophotolithography and shape memory alloy for the fabrication of miniaturized actuators, Sens. Actuators A, 62, 741–747 (1997)

    Article  Google Scholar 

  44. G. Lim, K. Park, M. Sugihara, K. Minami, M. Esashi: Future of active catheters, Sens. Actuators, A 56, 113–121 (1996)

    Google Scholar 

  45. N.A. Smith, G.G. Antoun, A.B. Ellis, W.C. Crone: Improved adhesion between nickel.titanium shape memory alloy and a polymer matrix via silane coupling agents, Composites A, 35, 1307–1312 (2004)

    Article  Google Scholar 

  46. A. Hirose, M. Uchihara, T. Aeraki, K. Honda, M. Kondoh: Laser welding of Ti-Ni type shape memory alloy, J. Jpn. Instrum. Metals 54(3), 262–269 (in Japanese, 1990)

    Google Scholar 

  47. D. Stoeckel, A. Pelton, T. Duerig: Self-expanding nitinol stents: Material and design considerations, Eur. Radiol. 14(2), 292–301 (2004)

    Article  Google Scholar 

  48. D. Homma, S. Uemura, F. Nakazawa: Functional Anisotropic Shape Memory Alloy Fiber and Differential Servo Actuator, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Tsukuba, pp. 463–472 (2007)

    Google Scholar 

  49. D. Stockel: Status and Trends in Shape Memory Technology, Proceedings of Actuators’92, pp.79–84 (Bremen, Germany, 1992)

    Google Scholar 

  50. T.W. Duering, K.N. Melton, D. Stockel, C.M. Wayman: Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London, 1990)

    Google Scholar 

  51. S. Miyazaki, K. Otsuka: Deformation and transition behavior associated with the r-phase in Ti-Ni alloys, Metal Trans. A 17A, 53–63 (1986)

    Article  Google Scholar 

  52. S. Miyazaki, T. Hashinaga, A. Ishida: Thin Solid Films 364, 281–282 (1996)

    Google Scholar 

  53. T.H. Nam, T. Saburi, K. Shimizu: Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater. Trans. JIM, 31, pp. 959–967 (1990)

    Google Scholar 

  54. H.C. Lin, K.M. Lin, S.K. Chang, C.S. Lin: A study of TiNiV ternary shape memory alloys, J. Alloys Compounds 284(1–2), 213–217 (1999)

    Article  Google Scholar 

  55. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, S. Hanada: Effect of heat treatment and sn content on superelasticity in biocompatible TiNbSb alloys, Mater. Trans. 43, 2978–2983 (2002)

    Article  Google Scholar 

  56. K. Ikuta, M. Tsukamoto, S. Hirose: Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 427–430 (Leuven, Belgium, 1998)

    Google Scholar 

  57. A. Menciassi, J.H. Park, S. Lee, S. Gorini, P. Dario, J.O. Park: Robotic Solutions and Mechanisms for a Semi-autonomous Endoscope, Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Vol. 2, pp. 1379–1384 (Lausanne, Switzerland, 2002)

    Google Scholar 

  58. W. Makishi, T. Matsunaga, M. Esashi, Y. Haga: Active bending electric endoscope using shape memory alloy coil actuators, Trans. IEE Jpn. 127-E(2), 75–81 (in Japanese, 2000)

    Google Scholar 

  59. W.C. McCoy: U.S. Patent 4 543 090 (1985)

    Google Scholar 

  60. S. Kaneko, S. Aramaki, K. Arai, Y. Takahashi, H. Adachi, K. Yanagisawa: Multi-Freedom Tube Type Manipulator with SMA Plate, Proceedings of the International Symposium on Microsystems, Intelligent Materials and Robots, Sendai, Japan, pp. 87–90 (1995)

    Google Scholar 

  61. P.W. Bremer: U.S. Patent 4 753 223 (1988)

    Google Scholar 

  62. T. Fukuda, S. Guo, K. Kosuge, F. Arai, M. Negoro, K. Nakabayashi: Micro Active Catheter System with Multi Degrees of Freedom, Proceedings of 1994 IEEE International Conference on Robotics and Automation, San Diego, pp. 2290–2295 (1994)

    Google Scholar 

  63. H. Takizawa, H. Tosaka, R. Ohta, S. Kaneko, Y. Ueda: Development of a Microfine Active Bending Catheter Equipped with MIF Tactile Sensors, Twelfth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’99), Orlando, pp. 412–417 (1999)

    Google Scholar 

  64. K. Park, K. Minami, M. Esashi: An integrated communication and control system for a multi-link active catheter, J. Micromech. Microeng. 6, 345–351 (1996)

    Article  Google Scholar 

  65. Y. Haga, Y. Tanahashi, M. Esashi: Small Diameter Active Catheter Using Shape Memory Alloy, MEMS 98 Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems, pp. 419–424 (Heidelberg, Germany, 1998)

    Google Scholar 

  66. T. Mineta, Y. Watanabe, S. Kobayashi, Y. Haga, M. Esashi: Active catheter using multi-link-joint structure fabricated in silicon wafer, Trans. IEE Jpn. 119-E(12), 615–619 (1999)

    Google Scholar 

  67. Y. Haga, S. Maeda, M. Esashi: Bending, Torsional and Extending Active Catheter Assembled Using Electroplating, Proceedings of IEEE International Micro Electro Mechanical Systems Conference (MEMS 2000), Miyazaki, pp. 181–186 (2000)

    Google Scholar 

  68. A. Lim, S. Lee: Thin Tube-type Bending Actuator Using Planar S-shaped Shape Memory Alloy Springs, Technical Digest of the 10th International Conference Solid-State Sensors and Actuators (Transducers’99), Sendai, Vol. 2, pp. 1894–1895 (1999)

    Google Scholar 

  69. A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup: A Practical microgripper by fine alignment, eutectic bonding, and SMA actuation, Sens. Actuators A 54, 755–759 (1996)

    Article  Google Scholar 

  70. M. kohl, E. Just, W. Pflenging, S. Miyazaki: SMA microgripper with integrated antagonism, Sens. Actuators A83, 208–213 (2000)

    Article  Google Scholar 

  71. S. Takeuchi, I. Shimoyama: A three-dimensional shape memory alloy microelectrode with clipping structure for insect neural recording, J. Microelectromech. Syst. 9(1), 24–31 (Mar, 2000)

    Google Scholar 

  72. T. Sugawara, K. Hirota, M. Watanabe, T. Mineta, E. Makino, S. Toh, T. Shibata: Shape memory thin film actuator for holding a fine blood vessel, Sens. Actuators A 130–131, 461–467 (2006)

    Google Scholar 

  73. T. Mineta, N. Kida, S. Nomura, E. Makino, T. Sugawara, S. Toh, T. Shibata: Pulsation sensor integrated with microvascular holding actuator for thrombosis monitoring, Sens. Actuators A 143(1), 14–19 (2008)

    Article  Google Scholar 

  74. J.D. Busch, A.D. Johnson: Prototype Microvalve Actuator, Proceedings of MEMS’90 (Napa Valley, CA, USA, 1990)

    Google Scholar 

  75. C.A. Ray, C.L. Sloan, A.D. Johnson, J.D. Busch, B.R. Petty: A silicon-based shape memory alloy microvalve, Mater. Res. Sot. Symp. Proc. 276, 161–166 (1992)

    Article  Google Scholar 

  76. M. Kohl, K.D. Skrobanek, S. Miyazaki: Development of Stress-optimized Shape Memory Microvalves, Sensors and Actuators A72, 243–250 (1997)

    Article  Google Scholar 

  77. K.D. Skrobanek, M. Kohl, S. Miyazaki: Stress-optimized Shape Memory Microvalves, Proceedings of the MEMS’97, pp. 256–261 (1997)

    Google Scholar 

  78. M. Kohl, E. Just, A. Strojek, K.D. Skrobanek, W. Pfleging, S. Miyazaki: Shape Memory Microvalves for High Pressure Applications, Proceedings of Actuators’98, pp. 473–477 (Bremen, Germany, 1998)

    Google Scholar 

  79. M. Kohl, D. Dittmann, E. Quandt, B. Winzek: Thin film shape memory microvalves with adjustable operation temperature, Sens. Actuators A83, 214–219 (2000)

    Article  Google Scholar 

  80. W.L. Benart, H. Kahn, A.H. Heuer, M.A. Huff: A Titanium-Nickel Shape Memory Alloy Actuated Micropump, Transducers’97, pp. 361–364 (Chicago, IL, USA, 1997)

    Google Scholar 

  81. E. Makino, T. Mitsuya, T. Shibata: Micromachining of TiNi shape memory thin film for fabrication of micropump, Sens. Actuators 79, 251–259 (2000)

    Article  Google Scholar 

  82. E. Makino, T. Mitsuya, T. Shibata: Fabrication of TiNi shape memory micropump, Sens. Actuators A 88, 256–262 (2001)

    Article  Google Scholar 

  83. K. Hara, K. Hane, M. Sasaki, M. Kohl: Si Micromechanical Fiber-Optic Switch with Shape Memory Alloy Microactuator, Proceedings of the Solid-State Sensors and Actuators (Transducers’99), Sendai, pp. 790–793 (1999)

    Google Scholar 

  84. R.D. Howe, D.A. Kontarinis, W.J. Peine: Shape Memory Alloy Actuator Controller Design for Tactile Displays, Proceedings of the 34th Conference on Decision and Control, New Orleans, pp. 3540–3544 (1995)

    Google Scholar 

  85. P.M. Taylor, A. Moser, A. Creed: A sixty-four element tactile display using shape memory alloy wires, Displays 18(3), 163–168 (1998)

    Article  Google Scholar 

  86. P.S. Wellman, W.J. Peine, G.E. Favalora, R.D. Howe: Mechanical Design and Control of a High-Bandwidth Shape Memory Alloy Tactile Display, 1997 International Symposium on Experimental Robotics, Barcelona, pp. 56–66 (1997)

    Google Scholar 

  87. R. Velazquez, E. Pissaloux, M. Hafez, J. Szewczyk: A Low-Cost Highly-Portable Tactile Display Based on Shape Memory Alloy Micro-Actuators, IEEE International Conference on Virtual Environments, Human–Computer Interfaces, and Measurement Systems (VECIMS 2005), Giardini Naxos, pp. 121–126 (2005)

    Google Scholar 

  88. W. Yoshikawa, A. Sasabe, K. Sugano, T. Tsuchiya, A. Ishida, O. Tabata: Design construction of beam structured vertical drive SMA thin film actuator for small tactile display, IEE J Trans. SM, 128(4), 151–160 (in Japanese, 2008)

    Article  Google Scholar 

  89. Y. Okamura, T. Namazu, D. Kamoyama, N. Urushihara, T. Sasaki, T. Nagamura, Y. Isono: Ti-Ni SMA Film-Actuated 2-D Multi-Probe Array for Scanning Probe Nano-Lithography on a Wide Area, Transducers’07, pp. 2195–2198 (Lyon, France, 2007)

    Google Scholar 

  90. M.M.I. Bhuiyan, Y. Haga, M. Esashi: Design and characteristics of large displacement optical fiber switch, IEEE J. Quantum Electron. 41(2), 242–249 (2005)

    Article  Google Scholar 

  91. J. Barth, B. Krevet, M. Kohl: A Bistable SMA Microactuator with Large Work Output, The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2009), Denver, pp. 41–44 (2009)

    Google Scholar 

  92. G. Lim, K. Minami, K. Yamamoto, M. Sugihara, M. Uchiyama, M. Esashi: Multi-link Active Catheter Snake-like Motion, Robotica 14, 499–506 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Masayoshi Esashi of Tohoku university for support and advices about MEMS process and development of microactuators. The authors also thank to Professor Kiyoshi Yamauchi of Tohoku university and Professor Eiji Makino of Hirosaki university for helpful advices on SMA material properties and fabrication technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Mineta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mineta, T., Haga, Y. (2011). Materials and Processes in Shape Memory Alloy. In: Ghodssi, R., Lin, P. (eds) MEMS Materials and Processes Handbook. MEMS Reference Shelf, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47318-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47318-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47316-1

  • Online ISBN: 978-0-387-47318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics