Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

Curcumin, a compound in the human food supply, represents a nearperfect starting point for drug discovery. Consequently, a number of research groups have taken the natural product as a starting point to prepare and biologically evaluate a wide variety of curcumin analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. B. J. Druker, C. L. Sawyers, H. Kantarjian, D. J. Resta, S. F. Reese, J. M. Ford, R. Capdeville, and M. Talpaz, Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344(14), 1038–1042 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. 2. M. A. Cobleigh, C. L. Vogel, D. Tripathy, N. J. Robert, S. Scholl, L. Fehrenbacher, J. M. Wolter, V. Paton, S. Shark, G. Lieberman, and D. J. Slamon, Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9), 2639–2648 (1999).

    PubMed  CAS  Google Scholar 

  3. 3. R. B. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. J. Gralla, D. L. Trump, J. R. Baker, Jr., D. A. Van Echo, D. D. Van Hoff, and B. Leyland-Jones, Hypersensitivity reactions from taxol. J Clin Oncol 8(7), 1263–1268 (1990).

    PubMed  CAS  Google Scholar 

  4. 4. E. A. Eisenhauer, W. W. ten Bokkel Huinink, K. D. Swenerton, L. Gianni, J. Myles, M. E. van der Burg, I. Kerr, J. B. Vermorken, K. Buser, and N. Colombo, European–Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high dose versus low-dose and long versus short infusion. J Clin Oncol 12(12), 2654–2666 (1994).

    PubMed  CAS  Google Scholar 

  5. 5. D. Raghavan, B. Koczwara, and M. Javle, Evolving strategies of cytotoxic chemotherapy for advanced prostate cancer. Eur J Cancer 33(4), 566–574 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. 6. S. Shishodia, G. Sethi, and B. B. Aggarwal, Curcumin: Getting back to the roots. Ann NY Acad Sci 1056, 206–217 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. 7. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen, C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh, Phase I clinical trials of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B), 2895–2900 (2001).

    PubMed  CAS  Google Scholar 

  8. 8. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23(1A), 363–398 (2003).

    PubMed  CAS  Google Scholar 

  9. 9. A. Duviox, R. Blasius, S. Delhalle, M. Schnekenburger, F. Morceau, E. Henry, M. Dicato, and M. Diederich, Chemopreventive and therapeutic effects of curcumin, Cancer Lett 223(2), 181–190 (2005).

    Article  CAS  Google Scholar 

  10. 10. R. A. Sharma, A. J. Gescher, and W. P. Steward, Curcumin: The story so far. Eur J Cancer 41(13), 1955–1968 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. 11. A. T. Dinkova-Kostova, C. Abeygunawardana, and P. Talalay, Chemoprotective properties of phenylpropenoids, bis(benzylidene)cycloalkanones, and related Michael reaction acceptors: Correlation of potencies as phase 2 enzyme inducers and radical scavengers. J Med Chem 41(26), 5287–5296 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. 12. B. Mutus, J. D. Wagner, C. J. Talpas, J. R. Dimmock, O. A. Phillips, and R. S. Reid, 1-p-chlorophenyl-4,4-dimethyl-5-ethylamino-1-penten-3-one hydrobromide, a sulfhydryl-specific compound which reacts irreversibly with protein thiols but reversibly with smaller molecular weight thiols. Anal Biochem 177(2), 237–243 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. 13. S. Mathews and M. N. A. Rao, Interaction of curcumin with glutathione. Int J Pharm 76(3), 257–259 (1991).

    Article  CAS  Google Scholar 

  14. 14. S. Awasthi, U. Pandya, S. S. Singhal, J. T. Lin, V. Thiviyanathan, W. E. Seifert, Y. C. Awasthi, and G. A. S. Ansara, Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. Chemico-Biol Interact 128(1), 19–38 (2000).

    Article  CAS  Google Scholar 

  15. 15. H. M. Wortelboer, M. Usta, A. E. Van der Velde, M. G. Boersma, B. Spenkelink, J. J. Van Zanden, J. Jelmer, I. M. C. M. Rietjens, P. J. Van Bladeren, and N. H. Cnubben, Interplay between MRP inhibition and metabolism of MRP inhibitors: The case of curcumin. Chem Res Toxicol 16(12), 1642–1651 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. 16. Y. J. Wang, M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12), 1867–1876 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. 17. M. J. Ansari, S. Ahmad, K. Kohli, J. Ali, and R. K. Khar, Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J Pharm Biomed Anal 9(1–2), 132–138 (2005).

    Article  CAS  Google Scholar 

  18. 18. J. R. Dimmock, P. Kumar, A. J. Nazarali, N. L. Motaganahalli, T. P. Kowalchuk, M. A. Beazely, J. W. Quail, E. O. Oloo, T. M. Allen, J. Szydlowski, E. De Clerq, and J. Balzarini, Cytotoxic 2,6-bis(arylidene)cyclohexanones and related compounds. Eur J Med Chem 35(11), 967–977 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. 19. J. R. Dimmock, M. P. Padmanilayam, G. A. Zello, K. H. Nienaber, T. M. Allen, C. L. Santos, E. De Clerq, J. Balzarini, E. K. Manavathu, and J. P. Stables, Cytotoxic analogues of 2,6-bis(arylidene)cyclohexanones. Eur J Med Chem 38(2), 169–177 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. 20. J. R. Dimmock, M. P. Padmanilayam, R. N. Puthucode, A. J. Nazarali, N. L. Motaganahalli, G. A. Zello, J. W. Quail, E. O. Oloo, H.-B. Kraatz, J. S. Prisciak, T. M. Allen, C. L. Santos, J. Balzarini, E. De Clerq, and E. K. Manavathu, A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J Med Chem 44(4), 586–593 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. 21. J. R. Dimmock, A. Jha, G. A. Zello, J. W. Quail, E. O. Oloo, K. H. Nienaber, E. S. Kowalczyk, T. M. Allen, C. L. Santos, E. De Clerq, J. Balzerini, E. K. Manavathu, and J. P. Stables, Cytotoxic N-[4-(3-aryl-3-oxo-1-propenyl)phenylcarbonyl]-3,5-bis(phenylmethylene)-4-piperidones and related compounds. Eur J Med Chem 37(12), 961–972 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. 22. H. I. El-Subbagh, S. M. Abu-Zaid, M. A. Mahran, F. A. Badria, and A. M. Al-Obaid, Synthesis and biological evaluation of certain α, β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem 43(14), 2915–2921 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. 23. J. R. Dimmock, U. Das, H. I. Gul, M. Kawase, H. Sakagami, Z. Baráth, I. Ocsovsky, and J. Molnár, 3-Arylidene-1(4-nitrophenylmethylene)-3,4-dihydro-1H-naphthalen-2-ones and related compounds displaying selective toxicity and reversal of multidrug resistance in neoplastic cells. Bioorg Med Chem Lett 15, 1633–1636 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. 24. N. M. Pandya, N. S. Dhalla, and D. D. Santani, Angiogenesis: A new target for future therapy. Vasc Pharmacol 44(5), 265–274 (2006).

    Article  CAS  Google Scholar 

  25. 25. J. L. Arbiser, N. Klauber, R. Rohan, R. Van Leeuwen, M. Huang, C. Fisher, E. Flynn, and H. R. Byers, Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6), 376–383 (1998).

    PubMed  CAS  Google Scholar 

  26. 26. T. P. Robinson, T. Ehlers, R. B. Hubbard, X. Bai, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin. Bioorg Med Chem Lett 13(1), 115–117 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. 27. J. R. Dimmock, N. M. Kandepu, M. Hetherington, J. W. Quail, U. Pugazhenthi, A. M. Sudom, M. Chamankhah, P. Rose, E. Pass, T. M. Allen, S. Halleran, J. Szydlowski, B. Mutus, M. Tannous, E. K. Manavathu, T. G. Meyers, De Clerq, E., and J. Balzarini, Cytotoxic activities of Mannich bases of chalcones and related compounds. J Med Chem 41(7), 1014–1026 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. 28. Y. Satomi, Inhibitory effects of 3′-methyl-3-hydroxychalcone on proliferation of human malignant tumor cells and on skin carcinogenesis. Int J Cancer 55(3), 506–514 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. 29. L. W. Wattenberg, J. B. Coccia, and A. R. Galbraith, Inhibition of carcinogen-induced pulmonary and mammary carcinogenesis by chalcone administered subsequent to carcinogen exposure. Cancer Lett 83(1–2), 165–169 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. 30. M. L. Edwards, D. M. Stemerick, and P. S. Sunkara, Chalcones: A new class of antimitotic agents. J Med Chem 33(7), 1948–1954 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. 31. Y. Xia, Z. Yang, P. Xia, K. F. Bastow, Y. Nakanishi, and K. Lee, Antitumor agents. Part 202: Novel 2′-aminochalcones: Design, synthesis, and biological evaluation. Bioorg Med Chem Lett 10(8), 699–701 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. 32. T. P. Robinson, R. B. Hubbard, T. J. Ehlers, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg Med Chem 13(12), 4007–4013 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. 33. C. M. Ahn, W. Shin, H. B. Woo, S. Lee, and H. Lee, Synthesis of symmetrical bis-alkynyl or alkyl pyridine and thiophene derivatives and their antiangiogenic activities. Bioorg Med Chem Lett 14(15), 3893–3896 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. 34. J. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H. Park, B. S. Shim, S. H. Choi, and H. J. Kwon, Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 10(8), 695–704 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. 35. E. Hahm, Y. S. Gho, S. Park, C. Park, K. Kim, and C. Yang, Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem Biophys Res Commun 321(2), 337–344 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. 36. K. Singletary and C. MacDonald, Inhibition of benzo[a]pyrene- and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells by dibenzoylmethane and sulforaphane. Cancer Lett 155(1), 47–54 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. 37. H. Ohtsu, Z. Xiao, J. Ishida, M. Nagai, H. Wang, H. Itokawa, C. Su, C. Shih, T. Chiang, E. Chang, Y. Lee, M. Tsai, C. Chang, and K. Lee, Antitumor Agents 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J Med Chem 45(23), 5037–5042 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. 38. L. Lin, Q. Shi, A. K. Nyarko, K. F. Bastow, C.-C. Wu, C. Y. Su, C. C. Shih, and K. H. Lee, Antitumor Agents 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J Med Chem 49(13), 3963–3972 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. 39. Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 24, No 18S (June 20 Supplement), 2006: 14151, American Society of Clinical Oncology; http://meeting.jco.org/cgi/content/abstract/24/18_suppl/14151; cf. Houston Chronicle, July 11, 2005, In Cancer fight, a spice brings hope to the table. Available from http://pancreaticalliance.org/news/july2005.html

  40. 40. A. C. Bharti, S. Shishodia, J. M. Reuben, D. Weber, R. Alexanian, S. Raj-Vadhan ETALN. Donato, and B. B. Aggarwal, Nulear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors lead to apoptosis. Blood 103(8), 3175–3184 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. 41. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-kappaB is suppressed by curcumin (diferuloylmethane). J Biol Chem 270(42), 24,995–25,000 (1995).

    CAS  Google Scholar 

  42. 42. S. M. Plummer, K. A. Holloway, A. Karen, M. M. Manson, R. J. L. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signaling complex. Oncogene 18(44), 6013–6020 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. 43. C. E. Eberhart and R. N. Dubois, Eicosanoids and the gastrointestinal tract. Gastroenterology 109(1), 285–301 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. 44. C. Thiemermann, The spice of life: curcumin reduces the mortality associated with experimental sepsis. Crit Care Med 34, 2009–2011 (2006).

    Article  PubMed  Google Scholar 

  45. 45. A. M. Siddiqui, X. Cui, R. Wu, W. Dong, M. Zhou, M. Hu, H. H. Simms, and P. Wang, The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma. Crit Care Med 34, 1874–1882 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. 46. M. L. P. S. van Iersel, J. H. T. M. Ploemen, I. Struik, C. van Amersfoort, A. E. Keyzer, J. G. Schefferlie, and P. J. Van Bladeren, Inhibition of glutathione S-transferase activity in human melanoma cells by alpha, beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem-Biol Interact 102(2), 117–132 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. 47. A. T. Dinkova-Kostova and P. Talalay, Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 20(5), 911–914 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. 48. A. T. Dinkova-Kostova, M. A. Massiah, R. E. Bozak, R. J. Hicks, and P. Talalay, Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci USA 98(6), 3404–3409 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. 49. W. M. Weber, L. A. Hunsaker, S. F. Abcouwer, L. M. Deck, J. Vander, and L. David, Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13(11), 3811–3820 (2005).

    Article  PubMed  CAS  Google Scholar 

  50. 50. K. M. Youssef and M. A. El-Sherbeny, Synthesis and antitumor activity of some curcumin analogs. Arch Pharmazie (Weinheim, Germany) 338(4), 181–189 (2005).

    Article  CAS  Google Scholar 

  51. 51. K. M. Youssef, A. M. Ezzo, M. I. El-Sayed, A. A. Hazzaa, A. H. El-Medany, and M. Arafa, Curcumin analogs as anticancer agents: 1) preclinical safety evaluation in mice and rats. 2) Chemopreventive effects in DMH-Induced colon cancer in albino rats model, submitted.

    Google Scholar 

  52. 52. B. M. Markaverich, T. H. Schauweker, R. R. Gregory, M. Varma, F. S. Kittrell, D. Medina, and R. S. Rajender, Nuclear type II sites and malignant cell proliferation: Inhibition by 2,6-bisbenzylidenecyclohexanones. Cancer Res 52(9), 2482–2488 (1992).

    PubMed  CAS  Google Scholar 

  53. 53. B. K. Adams, E. M. Ferstl, M. C. Davis, M. Herold, S. Kurtkaya, R. F. Camalier, M. G. Hollingshead, G. Kaur, E. A. Sausville, F. R. Rickles, J. P. Snyder, D. C. Liotta, and M. Shoji, Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12(14), 3871–3883 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. 54. R. J. Anto, J. George, K. V. Dinesh Babu, K. N. Rajasekharan, and R. Kuttan, Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoids. Mutat Res 370(2), 127–131 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. 55. S. M. McElvain and R. E. McMahon, Piperidine derivatives. XXI. 4-Piperidone, 4-piperidinol, and certain of their derivatives. J Am Chem Soc 71, 901–906 (1949).

    Article  CAS  Google Scholar 

  56. 56. B. K. Adams, J. Cai, J. Armstrong, M. Harold, Y. J. Lu, A. Sun, J. P. Snyder, D. C. Liotta, D. P. Jones, and M. Shoji, EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anti-cancer Drugs 16(3), 263–275 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. 57. C. Syung-ai, A. L. Kumari, and A. Khar, Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2. Mol Cancer Ther 3, 1101–1108 (2004).

    Google Scholar 

  58. 58. A. Laurent, C. Nicco, C. Chéreau, C. Goulvestre, J. Alexandre, A. Alves, E. Lévy, F. Goldwasser, Y. Panis, O. Soubrane, B. Weill, and F. Batteux, Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65, 948–956 (2005).

    PubMed  CAS  Google Scholar 

  59. 59. R. M. Kluck, E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer, The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303), 1132–1136 (1997).

    Article  PubMed  CAS  Google Scholar 

  60. 60. T. Kuwana and D. D. Newmeyer, Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15(16), 691–699 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. 61. H. Zou, W. J. Henzel, X. Liu, A. Lutschg, and X. Wang, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3), 405–413 (1997).

    Article  PubMed  CAS  Google Scholar 

  62. 62. N. A. Thornberry and Y. Lazebnik, Caspases: Enemies within, Science 281(5381), 1312–1316 (1998).

    Article  PubMed  CAS  Google Scholar 

  63. 63. P. Li, D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, and X. Wang, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4), 479–489 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. 64. M. H. Pan, W. L. Chang, S. Y. Lin-Shiau, C. T. Ho, and J. K. Lin, Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspase in human leukemia HL-60 cells. J Agric Food Chem 49(3), 1464–1474 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. 65. D. Morin, S. Barthelemy, R. Zini, S. Labidalle, and J. Tillement, Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 495(1–2), 131–136 (2001).

    Article  PubMed  CAS  Google Scholar 

  66. 66. R. J. Anto, A. Mukhopadhyay, K. Denning, and B. B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogensis 23(1), 143–150 (2002).

    Article  CAS  Google Scholar 

  67. 67. L. Ghibelli, S. Coppola, G. Rotilio, E. Lafavia, V. Maresca, and M. R. Ciriolo, Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Commun 216(1), 462–469 (1995).

    Article  Google Scholar 

  68. 68. S. Tan, Y. Sagara, Y. Liu, P. Maher, and D. Schubert, The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141(16), 1423–1432 (1998).

    Article  PubMed  CAS  Google Scholar 

  69. 69. H. Fu, S. Thomas, D. C. Liotta, and J. P. Snyder, in preparation.

    Google Scholar 

  70. 70. A. Brown, H. Shim, and J. P. Snyder, in preparation.

    Google Scholar 

  71. 71. A. Sun, S. Mao, Y. Lu, M. Shojii, D. C. Liotta, and J. P. Snyder, in preparation.

    Google Scholar 

  72. 72. T. Ouchi, E. Yamabe, K. Hara, M. Hirai, and Y. Ohya, Design of attachment type of drug delivery systems by complex formation of avidin with biotinyl drug model and biotinyl saccharide, J Cont Release 94, 281–291 (2004).

    Article  CAS  Google Scholar 

  73. 73. G. Schoellmann and E. Shaw, Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry 2, 252–255 (1963).

    Article  PubMed  CAS  Google Scholar 

  74. 74. N. S. Callander, N. Varki, and L. V. Rao, Immunohistochemical identification of tissue factor in solid tumors. Cancer 70(5), 1194–1201 (1992).

    Article  PubMed  CAS  Google Scholar 

  75. 75. J. Contrino, G. Hair, D. L. Kreutzer, and F. R. Rickles, In situ detection of tissue factor in vascular endothelial cells: Correlation with the malignant phenotype of human breast disease. Nature Med 2(2), 209–215 (1996).

    Article  PubMed  CAS  Google Scholar 

  76. 76. C. B. Hansen, C. Pyke, L. C. Petersen, and L. V. M. Rao, Tissue factor-mediated endocytosis, recycling, and degradation of factor VIIa by a clathrin-independent mechanism not requiring the cytoplasmic domain of tissue factor. Blood 97(6), 1712–1720 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. 77. A. Sun, M. Shoji, Y. J. Lu, D. C. Liotta, and J. P. Snyder, Synthesis of EF24-tripeptide chloromethylketone: A novel curcumin-related anticancer drug delivery system. J Med Chem 49(11), 3153–3158 (2006).

    Article  PubMed  CAS  Google Scholar 

  78. 78. M. Shoji, A. Sun, W. Kisiel, Yang J. Lu, H. Shim, B. E. McCarey, C. Nichols, E. T. Parker, J. Pohl, A. R. Alizadeh, C. Mosley, D. C. Liotta, and J. P. Snyder, submitted.

    Google Scholar 

  79. 79. C. Kettner and E. Shaw, Synthesis of peptides of arginine chloromethyl ketone. Selective inactivation of human plasma kallikrein. Biochemistry 17(1), 4778–4784 (1978).

    Article  PubMed  CAS  Google Scholar 

  80. 80. S. A. Buhrow, J. M. Reid, L. Jia, M. Shojii, J. P. Snyder, D. C. Liotta, and M. M. Ames. AACR abstract (2005); part of an NCI subcontract to the Mayo Clinic under the Rapid Access to NCI Discovery (RAND) program sponsored by the NCI.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mosley, C.A., Liotta, D.C., Snyder, J.P. (2007). HIGHLY ACTIVE ANTICANCER CURCUMIN ANALOGUES. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_2

Download citation

Publish with us

Policies and ethics