Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

This chapter gives an overview of the radioprotective and radiosensitizing effect of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. C. Von Sonntag, The Chemical Basis of Radiation Biology. London: Taylor and Francis, 1987.

    Google Scholar 

  2. 2. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radical in aqueous solution. J Phys Chem Ref Data 17, 513–886 (1988).

    CAS  Google Scholar 

  3. 3. M. C. R. Symons and Gutteridge, Free Radicals and Ion, Chemistry Biology and Medicine. Oxford: Oxford University Press, 1998, pp. 40–60.

    Google Scholar 

  4. 4. W. A. Pryor, Cancer and free radicals. Basic Life Sci 39, 45–59 (1986).

    PubMed  CAS  Google Scholar 

  5. 5. S. S. Wallace, S. S., 1988, Detection and repair of DNA base damages produced by ionizing radiation. Environ Mol Mutagen 12, 431–477 (1988).

    PubMed  CAS  Google Scholar 

  6. 6. H. Esterbauer, Estimation of peroxidative damage, a critical review. Pathol Biol Paris 44, 25–28 (1996).

    PubMed  CAS  Google Scholar 

  7. 7. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine. Oxford: Oxford University Press, 1997.

    Google Scholar 

  8. 8. R. I. Walker and R. J. Cerveny, (eds.), Medical Consequences of Nuclear Warfare. Falls Church, VA: Office of the Surgeon General, 1989.

    Google Scholar 

  9. 9. A. V. Barabanova, Acute radiation syndrome with cutaneous syndrome. In: R. C. Ricks, M. E. Berger, and F. M. O'Hara, eds. The Medical Basis for Radiation Accident Preparedness, The Clinical Care of Victims. New York: Parthenon, 2002, pp. 217–224.

    Google Scholar 

  10. 10. H. D. Kogelnik, [100 years radiotherapy. On the birth of a new specialty]. Wien Klin Wochenschr. 110(9), 313–320 (1998).

    PubMed  CAS  Google Scholar 

  11. 11. H. D. Kogelnik, The history and evolution of radiotherapy and radiation oncology in Austria. Int J Radiat Oncol Biol Phys 35(2), 219–226 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. 12. H. M. Patt, E. B. Tyree, R. L. Straube, and D. E. Smith, D. E., 1949, Cysteine protection against X-irradiation, Science 110, 213–214 (1949).

    Article  CAS  Google Scholar 

  13. 13. T. R. Sweeney, Survey of Compounds from the Antiradiation Drug Development Program of the U.S. Army Medical Research and Development Command. Washington, DC: U.S.Government Printing Office, 1979. pp. 308–318.

    Google Scholar 

  14. 14. J. R. Maisin, J. R., 1998, Bacq and Alexander Award lecture: Chemical radioprotection, past, present, and future prospects. Int J Radiat Biol 73, 443–450 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. 15. G. C. Jagetia and V. A. Venkatesha, Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes. Environ Mol Mutagen 46, 12–21 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. 16. H. P. Ammon and M. A. Wahl, Pharmacology of Curcuma longa, Planta Med 57(1), 1–7 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. 17. D. Eigner and D. Scholz, Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal J. Ethnopharmacol 67, 1–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. 18. S. K. Abraham, L. Sarma, and P. C. Kesavan, Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat Res 303(3), 109–112 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. 19. K. C. Thresiamma, J. George, and R. Kuttan, Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity, J Exp Clin Cancer Res 17, 431–434 (1998).

    PubMed  CAS  Google Scholar 

  20. 20. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi, Chemoprevention by Curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with X-rays. Carcinogenesis 20(6), 1011–1018 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. 21. H. Inano, M. Onoda, K. Suzuki, H. Kobayashi, and K. Wakabayashi, Radiation-induced mammary tumors in virgin and parous rats administered contraceptive steroids, 17 alpha-ethibnylestradiol and norethisterone. Carcinogenesis 21(5), 1043–1050 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. 22. M. Rezvani and G. A. Ross, Modification of radiation-induced acute oral mucositis in the rat, Int J Radiat Biol 80(2), 177–182 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. 23. P. Nemavarkar, B. K. Chourasia, and K. Pasupathy, Evaluation of radioprotective action of compounds using Saccharomyces cerevisiae. J Environ Pathol Toxicol Oncol 23(2), 145–151 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. 24. H. Narang and M. Krishna, Inhibition of radiation induced nitration by Curcumin and nicotinamide in mouse macrophages. Mol Cell Biochem 276, 7–13 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. 25. P. Varadkar, P. Dubey, M. Krishna, and N. C. Verma, Modulation of radiation-induced protein kinase C activity by phenolics, J Radiol Prot 21, 361–370 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. 26. S. M. Khopde, K. I. Priyadarsini, S. N. Guha, J. G. Satav, P. Venkatesan, and M. N. Rao, Inhibition of radiation-induced lipid peroxidation by Tetrahydrocurcumin. Possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem 64(3), 503–509 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. 27. A. C. McLellan and P. J. Thornalley, Glyoxalase activity in human red blood cells fractionated by age. Mech Ageing Dev 48, 63–71 (1989).

    Article  PubMed  CAS  Google Scholar 

  28. 28. A. Szent-Györgyi, Bioelectronics of cancer. Bioenergetics 4, 533–562 (1973).

    Article  Google Scholar 

  29. 29. A. Szent-Györgyi, Protein radicals, regulation and cancer. Int J Quantum Chem QBS4, 179–184 (1997).

    Google Scholar 

  30. 30. N. I. Hooper, M. J. Tisdale, and P. J. Thornalley, Glyoxalase activity during differentiation of human leukaemic cells in vitro. Leuk Res 11, 1141–1148 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. 31. R. Sharma and R. K. Kale, Effect of radiation on glyoxalase I and glyoxalase II activities in spleen and liver of mice. Int J Radiat Biol 63(2), 233–238 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. 32. R. Sharma-Luthra and R. K. Kale, Inhibition of radiationinduced changes of glyoxalase I activity in mouse spleen and liver by phenothiazines. Int J Radiat Biol 67(4), 403–410 (1995).

    Article  Google Scholar 

  33. 33. R. K. Kale, Exploitation of hypoxia for radiation therapy: A lesson from phenothiazines. Med Hypothes 47, 107–110 (1996).

    Article  CAS  Google Scholar 

  34. 34. D. Choudhary, D. Chandra, and R. K. Kale, Modulation of radioresponse of glyoxalase system by curcumin. J Ethnopharmacol 64, 1–7 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. 35. G. C. Jagetia and G. K. Rajanikant, Effect of various doses of curcumin on the radiation-impaired healing of excision wound in mice: A preliminary study. J Wound Care 13(3), 107–109 (2004).

    PubMed  CAS  Google Scholar 

  36. 36. G. C. Jagetia and G. K. Rajanikant, Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wounds in mice whole-body exposed to various doses of γ-radiation. J Surg Res 120, 127–138 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. 37. G. C. Jagetia and G. K. Rajanikant, Curcumin treatment enhances the repair and regeneration of wounds in mice hemi-body exposed to γ-radiation, Plast Reconstr Surg 115(2), 515–528 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. 38. G. C. Jagetia, P. Venkatesh, and M. S. Baliga, Fruit extract of Aegle marmelos protects mice against radiation-induced lethality. Integr Cancer Ther 3(4), 323–332 (2004).

    Article  PubMed  Google Scholar 

  39. 39. R. D. Granstein and M. S. Matsui, UV radiation-induced immunosuppression and skin cancer. Cutis 74(5), 4–9 (2004).

    PubMed  Google Scholar 

  40. 40. Y. Matsumura and H. N. Ananthaswamy, Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195, 298–308 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. 41. D. Grossman and D. J. Leffell, The molecular basis of nonmelanoma skin cancer: A new understanding. Arch Dermatol 133, 1263–1270 (1997).

    Article  PubMed  CAS  Google Scholar 

  42. 42. E. C. De Fabo, F. P. Noonan, T. Fears, and G. Merino, Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res 64, 6372–6376 (2004).

    Article  PubMed  Google Scholar 

  43. 43. J. Ramos, J. Villa, A. Ruiz, R. Armstrong, and J. Matta, UV dose determines key characteristics of nonmelanoma skin cancer. Cancer Epidemiol Biomarkers Prev 13, 2006–2011 (2004).

    PubMed  CAS  Google Scholar 

  44. 44. A. Ziegler, A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks, and D. E. Brash, Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).

    Article  PubMed  CAS  Google Scholar 

  45. 45. F. R. de Gruijl, Photocarcinogenesis, UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol 15, 316–320 (2002).

    Article  PubMed  Google Scholar 

  46. 46. D. Kulms, E. Zeise, B. Poppelmann, and T. Schwarz, DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene 21, 5844–5851 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. 47. D. E. Heck, A. M. Vetrano, T. M. Mariano, and J. D. Laskin, UVB light stimulates production of reactive oxygen species, unexpected role for catalase. J Biol Chem 278, 22,432–22,436 (2003).

    CAS  Google Scholar 

  48. 48. S. J. Rhee, Redox signaling, hydrogen peroxide as intracellular messenger. Exp Mol Med 31, 53–59 (1999).

    PubMed  CAS  Google Scholar 

  49. 49. M. Torres and H. J. Forman, Redox signaling and the MAP kinase pathways. Biofactor 17, 287–296 (2003).

    CAS  Google Scholar 

  50. 50. W.-H. Chan, C.-C. Wu, J.-S. and Yu, Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 90, 327–338 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. 51. Y. Oda, Inhibitory effect of curcumin on SOS functions induced by UV irradiation. Mutat Res 348(2), 67–73 (1995).

    Article  PubMed  CAS  Google Scholar 

  52. 52. J.-W. Cho, K. Park, G. R. Kweon, B.-C. Jang, W.-K. Baek, M.-H. Suh, C.-W. Kim, K.-S. Lee, and S.-I.Suh, Curcumin inhibits the expression of COX-2 in UVB–irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1, p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37(3), 186–192 (2005).

    PubMed  CAS  Google Scholar 

  53. 53. G. G. Steel and M. J. Peckham, Exploitable mechanism in combined radiotherapy-chemotherapy: The concept of additivity. Int J Radiat Oncol Biol Phys 5, 85–91 (1979).

    PubMed  CAS  Google Scholar 

  54. 54. R. K. Schmidt-Ullrich, J. N. Contessa, P. Dent, R. B. Mikkelsen, K. Valerie, D. B. Reardon, G. Bowers, and P. S. Lin, Molecular mechanisms of radiation-induced accelerated repopulation. Radiat Oncol Invest 7, 321–330 (1999).

    Article  CAS  Google Scholar 

  55. 55. J. Deacon, M. J. Peckham, and G. G. Steel, The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 2, 317–323 (1984).

    Article  PubMed  CAS  Google Scholar 

  56. 56. C. M. West, S. E. Davidson, S. A. Roberts, and R. D. Hunter, The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer 76, 1184–1190 (1997).

    PubMed  CAS  Google Scholar 

  57. 57. D. Chendil, R. S. Ranga, D. Meigooni, S. Sathishkumar, and M. M. Ahmed, Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3 Oncogene 23, 1599–1607 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. 58. R. Khafif, K. Hurst, D. M. Kyker, Z. Fliss, Z. Gil, and J. E. Medina, J. E., 2005, Curcumin: A new radiosensitizer of squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132, 317–321 (2005).

    Article  PubMed  Google Scholar 

  59. 59. M. C. P. Araujo, F. L. Dias, and C. S. Takahashi, Potentiation by turmeric and curcumin of γ–radiation-induced chromosome aberrations in Chinese Hamster ovary cells. Teratogen Carcinogen Mutagen 19, 9–18 (1999).

    Article  CAS  Google Scholar 

  60. 60. M. Subramanian, M. N. A. Sreejayan Rao, T. P. A. Devasagyam, and B. B. Singh, Diminution of singlet oxygen-induced DNA-damage by J.K. Lin and S.Y. Lin-Shiau curcumin and related antioxidants. Mutat Res 311, 249–255 (1994).

    PubMed  CAS  Google Scholar 

  61. 61. B. Joe and B. R. Lokesh, Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224, 255–263 (1994).

    Article  PubMed  CAS  Google Scholar 

  62. 62. N. Sreejayan and M. N. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46(2), 169–171 (1996).

    PubMed  CAS  Google Scholar 

  63. 63. A. C. Reddy and B. R. Lokesh, Effect of curcumin and eugenol on ironinduced hepatic toxicity in rats. Toxicology 107, 39–45 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. 64. R. G. Bristow and R. P. Hill, Molecular and cellular basis of radiotherapy. In: H. R. Tia, ed. The Basic Science of Oncology. New York: McGraw-Hill, New York, 1998, pp 295–322.

    Google Scholar 

  65. 65. S. K. Biswas, D. McClure, L. A. Jimenez, I. L. Megson, and I. Rahman, Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells, mechanism of free radical scavenging activity. Antioxid Redox Signa. 7(1–2), 32–41 (2005).

    Article  CAS  Google Scholar 

  66. 66. B. Joe, M. Vijaykumar, and B. R. Lokesh, Biological properties of Curcumin: Cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44, 97–111 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. 67. F. Bonte, M. S. Noel-Hudson, J. Wepierre, and A. Meybeck, Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress. Planta Med 63, 265–266 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. 68. D. E. Hallahan, D. R. Spriggs, M. A. Beckett, D. W. Kufe, and R. R. Weichselbaum, Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86(24),10,104–10,107 (1989).

    Article  CAS  Google Scholar 

  69. 69. C. N. Coleman, Radiation oncology: Linking technology and biology in the treatment of cancer. Acta Oncol 41, 6–13 (2002).

    Article  PubMed  Google Scholar 

  70. 70. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-κ B is suppressed by Curcumin (diferuloylmethane). J Biol Chem 270, 24,995–25,000 (1995).

    Article  CAS  Google Scholar 

  71. 71. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of Curcumin: Preclinical and clinical studies. Anticancer Res 23, 363–398 (2003).

    PubMed  CAS  Google Scholar 

  72. 72. A. K. Garg, T. A. Buchholz, and B. B. Aggarwal, Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7(11–12), 1630–1647 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. 73. C. V. Rao, A. Riven, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary Curcumin: A naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).

    PubMed  CAS  Google Scholar 

  74. 74. M. T. Huang, H. L. Newmark, and K. Frenkel, Inhibitory effects of Curcumin on tumorigenesis in mice. J Cell Biochem 27, 26–34 (1997).

    Article  CAS  Google Scholar 

  75. 75. B. Joe and B. R. Lokesh, Effect of Curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32, 1173–1180 (1997).

    Article  PubMed  CAS  Google Scholar 

  76. 76. J. C. Reed, JCytochrome c, can't live with it—can't live without it. Cell 91(5), 559–562 (1997).

    Article  PubMed  CAS  Google Scholar 

  77. 77. S. Sen, H. Sharma, and N. Singh, Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 331, 1245–1252 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. 78. R. Hanif, L. Qiao, S. J. Shiff, and B. Rigas, Curcumin, a natural plant phenolic food additive, inhibits cell proliferation, and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin–independent pathway. J Lab Clin Med 130, 576–584 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. 79. H. W. Chen and H. C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124, 1029–1040 (1998).

    Article  PubMed  CAS  Google Scholar 

  80. 80. H. Chen, Z. S. Zhang, Y. L. Zhang, and D. Y. Zhou, Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res 19, 3675–3680 (1999).

    PubMed  CAS  Google Scholar 

  81. 81. A. Chen and J. Xu, J., 2005, Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 288, G447–G456 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. 82. L. Korutla, J. Y. Cheung, J. Mendelsohn, and R. Kumar, Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by Curcumin. Carcinogenesis 16, 1741–1745 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jagetia, G.C. (2007). RADIOPROTECTION AND RADIOSENSITIZATION BY CURCUMIN. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_13

Download citation

Publish with us

Policies and ethics