Skip to main content

Application of Spectroscopic and Calorimetric Techniques in Protein Formulation Development

  • Chapter
Misbehaving Proteins
  • 961 Accesses

Abstract

The rational development of stable protein formulations requires a detailed understanding of the factors influencing the different routes of protein degradation. Aggregation, one of the major routes of protein degradation, is dependent on, among other factors, the conformational stability of the molecule. Assessing the conformational structure and the factors that affect it, usually via spectroscopic and calorimetric methods, is increasingly used in formulation development to better understand the influence of formulation variables on protein folding and/or aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. S. Hermeling, D. J. A. Crommelin, H. Schellekens, and W. Jiskoot, Structure-immunogenicity relationships of therapeutic proteins, Pharm. Res. 21, 897–903 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. 2. H. Schellekens, Immunogenicity of therapeutic proteins: Clinical implications and future prospects, Clin. Ther. 24, 1729–1740 (2002).

    Article  Google Scholar 

  3. 3. C. E. Glatz, Modeling of aggregation-precipitation phenomena, in: Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation, ed. T. E. Ahern and M. C. Manning (New York: Plenum Press, 1992), 135–166.

    Google Scholar 

  4. 4. W. Wang and D. N. Kelner, Correlation of rFVIII inactivation with aggregation in solution, Pharm. Res. 20, 693–700 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. 5. R. W. Carrell and D. W. Lomas, Conformational disease, Lancet 350, 134–138 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. 6. R. Krishnamurthy and M. C. Manning, The stability factor: Importance in formulation development, Curr. Pharm. Biotechnol. 3, 361–371 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. 7. B. S. Kendrick, J. L. Cleland, X. Lam, T. Nguyen, T. W. Randolph, M. C. Manning, and J. F. Carpenter, Aggregation of recombinant human interferon gamma: Kinetics and structural transitions, J. Pharm. Sci. 87, 1069–1076 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. 8. E. Y. Chi, S. Krishnan, T. W. Randolph, and J. F. Carpenter, Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation, Pharm. Res. 20(9): 1325–1336 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. 9. R. Lumry and H. Eyring, Conformational changes of proteins, J. Phys. Chem. 58, 110–120 (1954).

    Article  CAS  Google Scholar 

  10. 10. D. Xie and E. Freire, Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states, Proteins: Struct. Funct. Genet. 19, 291–301 (1994).

    Article  CAS  Google Scholar 

  11. 11. A. L. Fink, L. J. Calciano, Y. Goto, T. Kurotsu, and D. R. Palleros, Classification of acid denaturation of proteins: Intermediates and unfolded states, Biochem. 33, 12504–12511 (1994).

    Article  CAS  Google Scholar 

  12. 12. O. B. Ptitsyn, V. E. Bychkova, and V. N. Uversky, Kinetic and equilibrium folding intermediates, Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 348, 35–41 (1995).

    Article  CAS  Google Scholar 

  13. 13. L. A. Kueltzo and Middaugh, C.R., Structural characterization of bovine granulocyte colony stimulating factor: Effect of temperature and pH, J. Pharm. Sci. 92, 1793–1804 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. 14. J. E. Matsuura, A. E. Morris, R. R. Ketchem, E. H. Braswell, R. Klinke, W. R. Gombotz, and R. L. Remmele, Jr., Biophysical characterization of a soluble CD40 ligand (CD154) coiled-coil trimer: Evidence of a reversible acid-denatured molten globule, Arch. Biochem. Biophy. 392(2), 208–218 (2001).

    Article  CAS  Google Scholar 

  15. 15. A. L. Fink, Protein aggregation: Folding aggregates, inclusion bodies, and amyloid, Folding Des. 3, R9–R23 (1998).

    Article  CAS  Google Scholar 

  16. 16. G. P. Privalov and P. L. Privalov, Problems and prospects in microcalorimetry of biological macromolecules, J. Mol. Biol. 323, 31–62 (2000).

    CAS  Google Scholar 

  17. 17. C. N. Pace and K. L. Shaw, Linear extrapolation method of analyzing solvent denaturation curves, Proteins: Struct. Funct. Genet. S4, 1–7 (2000).

    Google Scholar 

  18. 18. M. J. Treuheit, A. A. Kosky, and D. N. Brems, Inverse relationship of protein concentration and aggregation, Pharm. Res. 19, 511–516 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. 19. P. L. Privalov, Stability of proteins: Small globular proteins, Adv. Prot. Chem. 33, 167–241 (1979).

    CAS  Google Scholar 

  20. 20. P. L. Privalov and S. A. Potekhin, Scanning microcalorimetry in studying temperature-induced changes in proteins, Meth. Enzymol. 131, 4–51 (1986).

    PubMed  CAS  Google Scholar 

  21. 21. E. Freire, Thermal denaturation methods in the study of protein folding, Meth. Enzymol. 259, 144–168 (1995).

    PubMed  CAS  Google Scholar 

  22. 22. R. L. Remmele, Jr., N. S. Nightlinger, S. Srinivasan, and W. R. Gombotz, Interleukin-1 receptor (IL-1R) liquid formulation development using differential scanning calorimetry, Pharm. Res. 15(2), 200–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. 23. M. Roberge, R. N. A. H. Lewis, F. Shareck, R. Morosoli, D. Kluepfel, C. Dupont, and R. N. McElhaney, Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of Xylanase A from Streptomyces lividans, Proteins: Struct. Funct. Genet. 50, 341–354 (2003).

    Article  CAS  Google Scholar 

  24. 24. M. Cueto, M. J. Dorta, O. Munguia, and M. Llabres, New approach to stability assessment of protein solution formulations by differential scanning calorimetery, Int. J. Pharm. 252, 159–166 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. 25. M. Cauchy, S. D'Aoust, B. Dawson, H. Rode, and M. A. Hefford, Thermal stability: A means to assure tertiary structure in therapeutic proteins, Biological 30, 175–185 (2002).

    Article  CAS  Google Scholar 

  26. 26. K. Tsumoto, K. Ogasahara, Y. Ueda, K. Watanabi, K. Yutani, and I. Kumagai, Role of salt-bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10, J. Biol. Chem. 271, 32612–32616 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. 27. S. L. Clugston, R. Yajima, and J. F. Honek, Investigation of metal binding and activation of Escherichia coli glycoxalase I: Kinetic, thermodynamic, and mutagenesis studies, Biochem. J. 377, 309–316 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. 28. D. K. Chou, R. Krishnamurthy, T. W. Randolph, J. C. Carpenter, and M. C. Manning, Effects of Tween 20 on the stability of Albutropin during agitation, AAPS National Biotechnology meeting, Boston, 2004.

    Google Scholar 

  29. 29. M. M. Pierce, C. S. Raman, and B. T. Nall, Isothermal titration calorimetry of protein-protein interactions, Methods 19, 213–221 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. 30. S. W. Dodd, H. A. Havel, P. M. Kovach, C. Lakshminarayan, M. P. Redmon, C. M. Sargeant, G. R. Sullivan, and J. M. Beals, Reversible adsorption of soluble hexameric insulin onto the surface of insulin crystals cocrystallized with protamine: An electrostatic interaction, Pharm. Res. 12, 60–68 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. 31. M. M. Santoro and D. W. Bolen, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants, Biochemistry 27, 8063–8068 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. 32. S. J. Shire, L. A. Holladay, and E. Rinderknecht, Self-association of human and porcine Relaxin as assessed by analytical ultracentrifugation and circular dichroism, Biochemistry 30, 7703–7711 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. 33. J. F. Carpenter, S. J. Prestrelski, and A. Dong, Application of infrared spectroscopy to development of stable lyophilized protein formulations, Eur. J. Pharm. Biopharm. 45, 231–238 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. 34. S. T. Tzannis, W. J. M. Hrushesky, P. A. Wood, and T. M. Przybycien, Irreversible inactivation of interleukin-2 in a pump-based delivery environment, Proc. Nat. Acad. Sci. USA 93, 5460–5465 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. 35. G. Zuber, S. J. Prestrelski, and K. Benedek, Application of Fourier transform infrared spectroscopy to studies of aqueous protein solutions, Anal. Biochem. 207, 150–156 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. 36. A. Dong, S. J. Prestrelski, S. D. Allison, and J. F. Carpenter, Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation, J. Pharm. Sci. 84(4), 415–424 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. 37. B. S. Kendrick, A. Dong, S. D. Allison, M. C. Manning, and J. C. Carpenter, Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine structural similarity of a protein in different states, J. Pharm. Sci. 85(2), 155–158 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. 38. S. J. Prestrelski, T. Arakawa, and J. F. Carpenter, Separation of freezing-and drying-induced denaturation of lyophilized proteins using stress-specific stabilization II. Structural studies using infrared spectroscopy, Arch. Biochem. Biophys. 303(2), 465–473 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. 39. B. S. Kendrick, B. S. Chang, T. Arakawa, B. Peterson, T. W. Randolph, M. C. Manning, and J. C. Carpenter, Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: Role in restricted conformational mobility and compaction of native state, Proc. Natl. Acad. Sci. USA 94, 11917–11922 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. 40. E. Y. Chi, S. Krishnan, B. S. Kendrick, B.S. Chang, J. F. Carpenter, and T. W. Randolph, Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor, Prot. Sci. 12, 903–913 (2003).

    Article  CAS  Google Scholar 

  41. 41. S. Krishnan, E. Y. Chi, J. N. Webb, B. S. Chang, D. Shan, M. Goldenberg, M. C. Manning, T. W. Randolph, and J. F. Carpenter, Aggregation of granulocyte colony-stimulating factor under physiological conditions: Characterization and thermodynamic inhibition, Biochemistry 41, 6422–6431 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. 42. T. Arakawa and Y. Kita, Stabilizing effects of caprylate and acetyltryptophonate on heat-induced aggregation of bovine serum albumin, Biochim. Biophys. Acta, 1479, 32–36 (2000).

    PubMed  CAS  Google Scholar 

  43. 43. R. L. Remmele, Jr., S. D. Bhat, D. H. Phan, and W. R. Gombotz, Minimization of recombinant human F1t3 ligand aggregation at the Tm plateau: A matter of thermal reversibility, Biochemistry 38, 5241–5247 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. 44. J. C. Lee and S. N. Timasheff, The stabilization of proteins by sucrose, J. Biol. Chem. 256, 7193–7201 (1981).

    PubMed  CAS  Google Scholar 

  45. 45. S. N. Timasheff, Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated, Adv. Prot. Chem. 51, 355–432 (1998).

    Article  CAS  Google Scholar 

  46. 46. Y. Kim, L. S. Jones, A. Dong, B. S. Kendrick, B. S. Chang, M. C. Manning, T. W. Randolph, and J. F. Carpenter, Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins, Prot. Sci. 12, 1252–1261 (2003).

    Article  CAS  Google Scholar 

  47. 47. J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph, Rational design of stable lyophilized protein formulations: some practical advice, Pharm. Res. 14, 969–975 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. 48. J. L. Cleland, X. Lam, B. Kendrick, J. Yang, T. Yang, D. Overcashier, D. Brooks, C. Hsu, and J. F. Carpenter, A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody, J. Pharm. Sci. 90(3), 310–321 (2000).

    Article  Google Scholar 

  49. 49. V. Hlady, J. Buijs, and H. P. Jennissen, Methods for studying protein adsorption, Meth. Enzymol. 309, 402–429 (1999).

    PubMed  CAS  Google Scholar 

  50. 50. M. A. Carignano and I. Szleifer, Prevention of protein adsorption by flexible and rigid chain molecules, Colloids Surf. B: Biointerfaces 18, 169–182 (2000).

    Article  CAS  Google Scholar 

  51. 51. F. Zhang, E. T. Kang, K. G. Neoh, P. Wang, and K. L. Tan, Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption, Biomaterials 22, 1541–1548 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. 52. M. A. Ruegsegger and R. E. Marchant, Reduced protein adsorption and platelet adhesion by controlled variation of oligomaltose surfactant polymer coatings, J. Biomed. Mater. Res. 56, 159–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. 53. T. Hasegawa, Y. Iwasaki, and K. Ishihara, Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend, Biomaterials 22, 243–251 (2001).

    Article  PubMed  CAS  Google Scholar 

  54. 54. X. M. Lam, T. W. Patapoff, and T. H. Nguyen, The effect of benzyl alcohol on recombinant human interferon-γ, Pharm. Res. 14, 725–729 (1997).

    Article  PubMed  CAS  Google Scholar 

  55. 55. B. Chen, T. Arakawa, E. Hsu, L. O. Narhi, T. J. Tressel, and S. L. Chien, Strategies to suppress aggregation of recombinant keratinocyte growth factor during liquid formulation development, J. Pharm. Sci. 83(12), 1657–1661 (1994).

    Article  PubMed  CAS  Google Scholar 

  56. 56. Y. Kita and T. Arakawa, Salts and glycine increase reversibility and decrease aggregation during thermal unfolding of ribonuclease-A, BioSci. Biotechnol. Biochem. 66, 880–882 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. 57. T. Ueda, M. Nagata, and T. Imoto, Aggregation and chemical reaction in hen lysozyme caused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose, J. Biochem. (Tokyo) 130, 491–496 (2001).

    CAS  Google Scholar 

  58. 58. B. S. Chang, R. M. Beauvais, A. Dong, and J. F. Carpenter, Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: Glass transition and protein conformation, Arch. Biochem. Biophys. 331(2), 249–258 (1996).

    Article  PubMed  CAS  Google Scholar 

  59. 59. S. J. Prestrelski, K. A. Pikal, and T. Arakawa, Optimization of lyophilization conditions for recombinant human interleukin-2 by dried state conformational analysis using Fourier-transform infrared spectroscopy, Pharm. Res. 12(9), 1250–1259 (1995).

    Article  PubMed  CAS  Google Scholar 

  60. 60. Y. Liao, M. B. Brown, A. Quader, and G. P. Martin, Protective mechanism of stabilizing excipients against dehydration in the freeze-drying of proteins, Pharm. Res. 19(12), 1852–1861 (2002).

    Google Scholar 

  61. 61. L. Kreilgaard, S. Frokjaer, J. M. Flink, T. W. Randolph, and J. F. Carpenter, Effect of additives on the stability of Humicola langinosa lipase during freeze-drying and storage in the dried solid, J. Pharm. Sci. 88(3), 281–290 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. 62. S. D. Allison, M. C. Manning, T. W. Randolph, K. Middleton, A. Davis, and J. F. Carpenter, Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran, J. Pharm. Sci. 89(2), 199–214 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. 63. R. L. Remmele, Jr., C. Stushnoff, and J. F. Carpenter, Real-time in situ monitoring of lysozyme during lyophilization using infrared spectroscopy: Dehydration stress in the presence of sucrose, Pharm. Res. 14(11), 1548–1555 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. 64. J. D. Andya, C. C. Hsu, and S. J. Shire, Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations, AAPS Pharm. Sci. 5(2), 1–11 (2003).

    Article  Google Scholar 

  65. 65. J. Fransson, D. Hallen, and E. Florin-Robertsson, Solvent effects on the solubility and physical stability of human insulin-like growth factor I, Pharm. Res. 14, 606–612 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. 66. S. D. Webb, J. L. Cleland, J. F. Carpenter, and T. W. Randolph, Effect of annealing lyophilized and spray-lyophilized formulations of recombinant human interferon-gamma, J. Pharm. Sci. 92, 715–729 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Wilcox, A., Krishnamurthy, R. (2006). Application of Spectroscopic and Calorimetric Techniques in Protein Formulation Development. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_5

Download citation

Publish with us

Policies and ethics