Skip to main content

Self-Association of Therapeutic Proteins

Implications for Product Development

  • Chapter
Misbehaving Proteins

Abstract

Protein aggregation is typically thought of as a denaturation process that results in the formation of precipitate. However, native proteins may reversibly selfassociate to form discrete aggregates of dimer, trimer, and higher molecular weight forms. The rates of reversible aggregate association and dissociation vary dramatically from protein to protein and can lead to misconceptions regarding aggregate content if the incorrect assay is used to determine the extent of aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. E. Y. Chi, S. Krishnan, T. W. Randolph, and J. F. Carpenter, Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation, Pharm. Res. 20(9), 1325–1336 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. 2. J. L. Cleland, M. F. Powell, and S. J. Shire, The development of stable protein formulations: a close look at protein aggregation, deamidation and oxidation, Crit. Rev. Ther. Drug Carrier Sys. 10(4), 307–377 (1993).

    CAS  Google Scholar 

  3. 3. M. J. Treuheit, A. A. Kosky, and D. N. Brems, Inverse relationship of protein concentration and aggregation, Pharm. Res. 19(4), 511–516 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. 4. A. Braun, L. Kwee, M. A. Labow, and J. Alsenz, Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice, Pharm. Res. 14(10), 1472–1478 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. 5. A. P. Minton, Confinement as a determinant of macromolecular structure and reactivity, Biophys. J. 63(4), 1090–1100 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. 6. J. Wilf and A. P. Minton, Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins, Biochim. Biophys. Acta 670(3), 316–322 (1981).

    PubMed  CAS  Google Scholar 

  7. 7. S. B. Zimmerman and A. P. Minton, Macromolecular crowding: biochemical, biophysical, and physiological consequences, Annu. Rev. Biophys. Biomol. Struct. 22, 27–65 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. 8. J. Lebowitz, M. S. Lewis, and P. Schuck, Modern analytical ultracentrifugation in protein science: a tutorial review, Prot. Sci. 11(9), 2067–2079 (2002).

    Article  CAS  Google Scholar 

  9. 9. S. J. Shire, Analytical ultracentrifugation and its use in biotechnology, in Modern Analytical Ultracentrifugation, eds. T. M. Schuster and T.M. Laue, (Boston: Birkhauser, 1992, 261–297).

    Google Scholar 

  10. 10. J. Wen, T. Arakawa, and J. S. Philo, Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions, Anal. Biochem. 240(2), 155–166 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. 11. J. E. Brennand, A. A. Calder, C. R. Leitch, I. A. Greer, M. M. Chou, and I. Z. MacKenzie, Recombinant human relaxin as a cervical ripening agent, Br. J. Obstet. Gynaecol. 104(7), 775–778 (1997).

    PubMed  CAS  Google Scholar 

  12. 12. R. J. Bell, M. Permezel, A. MacLennan, C. Hughes, D. Healy, and S. Brennecke, A randomized, double-blind, placebo-controlled trial of the safety of vaginal recombinant human relaxin for cervical ripening, Obstet. Gynecol. 82(3), 328–333 (1993).

    PubMed  CAS  Google Scholar 

  13. 13. A. H. MacLennan, R. C. Green, P. Grant, and R. Nicolson, Ripening of the human cervix and induction of labor with intracervical purified porcine relaxin, Obstet. Gynecol. 68(5), 598–601 (1986).

    PubMed  CAS  Google Scholar 

  14. 14. M. I. Evans, M. B. Dougan, A. H. Moawad, W. J. Evans, G. D. Bryant-Greenwood, and F. C. Greenwood, Ripening of the human cervix with porcine ovarian relaxin, Am. J. Obstet. Gynecol. 147(4), 410–414 (1983).

    PubMed  CAS  Google Scholar 

  15. 15. J. R. Seibold, P. J. Clements, D. E. Furst, M. D. Mayes, D. A. McCloskey, L. W. Moreland, B. White, F. M. Wigley, S. Rocco, M. Erikson, J. F. Hannigan, M. E. Sanders, and E. P. Amento, Safety and pharmacokinetics of recombinant human relaxin in systemic sclerosis, J. Rheumatol. 25(2), 302–307 (1998).

    PubMed  CAS  Google Scholar 

  16. 16. J. R. Seibold, J. H. Korn, R. Simms, P. J. Clements, L. W. Moreland, M. D. Mayes, D. E. Furst, N. Rothfield, V. Steen, M. Weisman, D. Collier, F. M. Wigley, P. A. Merkel, M. E. Csuka, V. Hsu, S. Rocco, M. Erikson, J. Hannigan, W. S. Harkonen, and M. E. Sanders, Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial, Ann. Intern. Med. 132 (11), 871–879 (2000).

    PubMed  CAS  Google Scholar 

  17. 17. E. Canova-Davis, I. P. Baldonado, and G. M. Teshima, Characterization of chemically synthesized human relaxin by high-performance liquid chromatography, J. Chromat. A 508(1), 81–96 (1990).

    Article  CAS  Google Scholar 

  18. 18. S. J. Shire, L. A. Holladay, and E. Rinderknecht, Self-association of human and porcine relaxin as assessed by analytical ultracentrifugation and circular dichroism, Biochemistry 30(31), 7703–7711 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. 19. S. J. Shire, D. L. Foster, and E. Rinderknecht, Spectroscopic and hydrodynamic characterization of synthetic human and porcine relaxin, Biophys. Chem. 53, 72a (1988).

    Google Scholar 

  20. 20. T. W. Patapoff, R. J. Mrsny, and W. A. Lee, The application of size exclusion chromatography and computer simulation to study the thermodynamic and kinetic parameters for short-lived dissociable protein aggregates, Anal. Biochem. 212(1), 71–78 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. 21. C. Eigenbrot, M. Randal, C. Quan, J. Burnier, L. O'Connell, E. Rinderknecht, and A. A. Kossiakoff, X-ray structure of human relaxin at 1.5 A. Comparison to insulin and implications for receptor binding determinants, J. Mol. Biol. 221(1), 15–21 (1991).

    PubMed  CAS  Google Scholar 

  22. 22. N. H. Fernando and H. I. Hurwitz, Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer, Semin. Oncol. 30 (3 Suppl 6), 39–50 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. 23. J. M. R. Moore, T. W. Patapoff, and M. E. M. Cromwell, Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor, Biochemistry 38(42), 13960–13967 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. 24. S. G. Hymowitz, M. P. O'Connell, M. A. Ultsch, A. Hurst, K. Totpal, A. Ashkenazi, B. de Vos, and R. F. Kelley, A unique zinc binding site revealed by a high-resolution x-ray structure of homotrimeric Apo2L/TRAIL, Biochemistry 39(4), 633–640 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. 25. A. Ashkenazi and V. M. Dixit, Death receptors: signaling and modulation, Science 281, 1305–1308 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. 26. A. Ashkenazi, R. C. Pai, S. Fong, S. Leung, D. A. Lawrence, S. A. Marsters, C. Blackie, L. Chang, A. E. McMurtrey, A. Hebert, L. DeForge, I. L. Koumenis, D. Lewis, J. Bussiere, H. Koeppen, Z. Shahrokh, and R. H. Schwall, Safety and anti-tumor activity of recombinant soluble Apo2 ligand, J. Clin. Inv. 104(2), 155–162 (1999).

    Article  CAS  Google Scholar 

  27. 27. H. Walczak, R. E. Miller, K. Ariail, B. Gliniak, T. S. Griffith, M. Kubin, W. Chin, J. Jones, A. Woodward, T. Le, C. Smith, P. Smolak, R. G. Goodwin, C. T. Rauch, J. C. Schuh, and D. H. Lynch, Tumoricidal activity of tumor necrosis factor apoptosis-inducing ligand in vivo, Nature Med. 5(2), 157–163 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. 28. S. J. Shire, Z. Shahrokh, and J. Liu, Challenges in the development of high protein concentration formulations, J. Pharm. Sci. 93(6), 1390–1402 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. 29. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function, ed. A.C. Bartlett (San Francisco: W. H. Freeman & Company, 1980, 503).

    Google Scholar 

  30. 30. A. P. Minton and M. S. Lewis, Self-association in highly concentrated solutions of myoglobin: a novel analysis of sedimentation equilibrium of highly nonideal solutions, Biophys. Chem. 14(4), 317–324 (1981).

    Article  PubMed  CAS  Google Scholar 

  31. 31. A. P. Minton, Analytical centrifugation with preparative ultracentrifuges, Anal. Biochem. 176, 209–216 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. 32. S. Darawshe and A. P. Minton, Quantitative characterization of macromolecular associations in solution via real-time and postcentrifugation measurements of sedimentation equilibrium: a comparison, Anal. Biochem. 220, 1–4 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. 33. S. Darawshe, G. Rivas, and A. P. Minton, Rapid and accurate microfractionation of the contents of small centrifuge tubes: application in the measurement of molecular weight of proteins via sedimentation equilibrium, Anal. Biochem. 209, 130–135 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. 34. A. K. Attri and A. P. Minton, Technique and apparatus for automated fractionation of the contents of small centrifuge tubes: application to analytical ultracentrifugation, Anal. Biochem. 152(2), 319–328 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. 35. D. E. Roark and D. A. Yphantis, Equilibrium centrifugation of nonideal systems. The Donnan effect in self-associating systems, Biochemistry 10(17), 3241–3249 (1971).

    Article  PubMed  CAS  Google Scholar 

  36. 36. A. P. Minton, The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences, Mol. Cell. Biochem. 55, 119–140 (1983).

    Article  PubMed  CAS  Google Scholar 

  37. 37. P. D. Ross and A. P. Minton, Hard quasispherical model for the viscosity of hemoglobin solutions, Biochem. Biophys. Res. Commun. 76(4), 971–976 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Cromwell, M.E., Felten, C., Flores, H., Liu, J., Shire, S.J. (2006). Self-Association of Therapeutic Proteins. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_14

Download citation

Publish with us

Policies and ethics