Skip to main content

The Regulation of Gene Expression in Plants and Animals

  • Chapter
Regulation of Gene Expression in Plants

Abstract

The control of gene expression in all cells involves an elaborate and dynamic interplay among what might best be described as regulatory molecules. These molecules include RNA polymerases, myriad transcription factors, the DNA template, the RNA produced by transcription, and the protein produced by translation with its attendant processing. To interfere with or in some way modify any of these critical elements is to potentially cause a profound change in the phenotypic manifestation of one or more genes or gene relays. It is clear that transcription is a consequence of a series of well-orchestrated, ordered events. Contemporary methods that examine this aspect of gene expression have revealed the dynamic nature of this biochemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acland, P., Dixon, M., Peters G., and Dickson, C., 1990, The subcellular fate of the Int-2 oncoprotein is determined by choice of inititation codon., Nature 343:662–665.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, C.M.I., Chanda, R.S., Snow, N.D., and Zain, B.S., 1982, The nucleotide sequence of mRNA for the Mr 19000 glycoprotein from early gene block III of adenovirus 2, Gene 20:339–346.

    Article  PubMed  CAS  Google Scholar 

  • Allard, P., Yang, Q., Marzluff, W.F., and Clarke, H.J., 2005, The stem-loop binding protein regulates translation of histone mRNA during mammalian oogenesis, Devel. Biol. 286:195–206.

    Article  CAS  Google Scholar 

  • Allen, E., Wang, S., and Miller, S.A., 1999, Barley yellow dwarf virus RNA requires a cap-independent translation sequence because it lacks a 5′ cap, Virology 253:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Alwine, J.C., Kemp, D.J., and Stark, G.R., 1977, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes, Proc. Natl. Acad. Sci. 74:5350–5354.

    Article  PubMed  CAS  Google Scholar 

  • Alwine, J.C., D.J. Kemp, B.A. Parker, J. Reiser, J. Renart, G.R. Stark, and G.M. Wahl. (1979). Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzyloxymethyl paper, Methods Enzymol. 68:220–242.

    PubMed  CAS  Google Scholar 

  • Antequera, F., and Bird, A.P., 1988, Unmethylated CpG islands associated with genes in higher plant DNA, EMBO J. 7:2295–2299.

    PubMed  CAS  Google Scholar 

  • Bag, J., 1991, mRNA and mRNP, in Translation in Eukaryotes, H. Trachsel, ed., CRC Press, Ft. Lauderdale pp.71–79.

    Google Scholar 

  • Bassett, C.L., Nickerson, M.L., Cohen, R.A., and Rajeevan, M.S., 2000, Alterantive transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory (Ipomoea nil), Plant Mol. Biol. 43:43–58.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C.L., Nickerson, M.L., Farrell, Jr., R.E., and Harrison, M., 2004, Multiple transcripts of a gene for a leucine-rich repeat receptor kinase from morning glory (Ipomoea nil) originate from different TATA boxes in a tissue-specific manner, Mol. Gen. Genomics 271:752–760.

    Article  CAS  Google Scholar 

  • Belostotsky, D.A., and Rose, A.B., 2005, Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events, Trends in Plant Sci. 10:347–353.

    Article  CAS  Google Scholar 

  • Berk, A.J., and Sharp, P.A., 1977, Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids, Cell 12:721–732.

    Article  PubMed  CAS  Google Scholar 

  • Berget, S.M., and Robberson, B.L., 1986, U1, U2, and U4/U6 small nuclear ribonucleoproteins are required for in vitro spicing but not for polyadenylation, Cell 46:691–696.

    Article  PubMed  CAS  Google Scholar 

  • Birnstiel, M.L., Busslinger, M., and Strub, K.., 1985, Transcription termination and 3′ end processing: the end is in site! Cell 41:349–359.

    Article  PubMed  CAS  Google Scholar 

  • Black, D.L., and Steitz, J.A., 1986, Pre-mRNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoprotein, Cell 46:697–704.

    Article  PubMed  CAS  Google Scholar 

  • Browning, K.S., 1996, The plant translational apparatus Plant Mol. Biol. 32:107–144.

    Article  PubMed  CAS  Google Scholar 

  • Bugler, B.F., Amalric, F., and Prats, H., 1991, Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor, Mol. Cell. Biol. 11:573–577.

    PubMed  CAS  Google Scholar 

  • Burke, T.W., and Kadonaga, J.T., 1996, Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters, Genes Dev. 10:711–724.

    Article  PubMed  CAS  Google Scholar 

  • Busch, M.A., Bomblies, K., and Weigel, D., 1999, Activation of a floral homeotic gene is Arabidopsis, Science 285:585–587.

    Article  PubMed  CAS  Google Scholar 

  • Cao, J.H., and Geballe, A.P., 1995, Translational inhibition by a human cytomegalovirus upstream open reading frame despite inefficient utilization of its AUG codon, J. Virol. 69:1030–1036.

    PubMed  CAS  Google Scholar 

  • Casey, J., and Davidson, N., 1977, Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentration of formamide, Nucleic Acids Res. 4:1539–1552.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., Sheen, J., Bligny, M., Niwa, Y., Lerbs-Mache, S., and Stern, D.B., 1999, Functional analysis of two maize cDNAs encoding T7-like RNA polymerases, Plant Cell 11:911–926.

    Article  PubMed  CAS  Google Scholar 

  • Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., and Luan, S., 2002, Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis, Plant Physiol. 129:661–677.

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar, S.P., and Miller, W.A., 1993, Control of start codon choice on a plant viral RNA encoding overlapping genes, Plant Cell 5:679–692.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, Jr., R.E., 2005, RNA Methodologies: A Laboratory Guide for Isolation and Characterization, (3/e), Elsevier Academic Press, San Diego, CA, pp.767.

    Google Scholar 

  • Futterer, J., and Hohn, T., 1996, Translation in plants-rules and exceptions, Plant Mol. Biol. 32:159–189.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L., Allen, E., and Miller, W.A., 2001, Base-pairing between untranslated regions facilitates translation of uncapped, non-polyadenylated viral RNA, Mol. Cell 7:1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Hamdan, M., and Righetti, P.G., 2005, Proteomics Today: Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technolog, John Wiley & Sons, Inc., Hoboken, NJ, pp. 448.

    Google Scholar 

  • Hann, S.R., 1994, Regulation and function of non-AUG-initiated protooncogenes, Biochime 76:880–886.

    Article  CAS  Google Scholar 

  • Hashimoto, C., and Steitz, J.A., 1986, A small nuclear ribonucleoprotein associates with AAUAAA polyadenylation signal in vitro, Cell 45:581–591.

    Article  PubMed  CAS  Google Scholar 

  • Hedtke, B., Börner, T., and Weihe, A., 1997, Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis, Science 277:809–811.

    Article  PubMed  CAS  Google Scholar 

  • Hedtke, B., Börner, T., and Weihe, A., 2000, One RNA polymerase serving two genomes, EMBO Reports 51:435–440.

    Article  Google Scholar 

  • Huang, H., Mizukami, Y., Hu, Y., and Ma, H., 1993, Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS, Nucleic Acids Res. 21:4769–4776.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, T.M., and Gray, M.W., 1999, Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat, Plant Mol. Biol. 40:567–578.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D.A., Pombo, A., and Iborra, F., 2000, The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells, FASEB J. 14:242–254.

    PubMed  CAS  Google Scholar 

  • Joshi, C.P., 1987, An inspection of the domain between putative TATA box and transation start site in 79 plant genes, Nucleic Acids Res. 15:6643–6652.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, C.P., Zhou, H., Huang, H., and Chiang, V.L., 1997, Context sequences of translation initiation codon in plants, Plant Molecular Biol. 35:993–1001.

    Article  CAS  Google Scholar 

  • Jung, A., Sippel, A.E., Grez, M., and Schutz, G., 1980, Exons encode functional and structural units of chicken lysozyme, Proc. Natl. Acad. Sci. 77:5759–5763.

    Article  PubMed  CAS  Google Scholar 

  • Kahvejian, A., Svitkin, Y.V., Sukarieh, R., M’Boutchou, M.N., and Sonenberg, N., 2005, Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19:104–113.

    Article  PubMed  CAS  Google Scholar 

  • Kannicht, C., 2002, Post-Translational Modification of Proteins: Tools for Functional Proteomics, Humana Press, Totowa, NJ, pp. 336.

    Google Scholar 

  • Kanno, T., Huettel, B., Mette, M.F., Aufsatz, W., Jaligot, E., Daxinger, L., Kreil, D.P., Matzkel, M., and Matzke, A.J.M., 2005, Atypical RNA polymerase subunits required for RNA-directed DNA methylation, Nature Genetics 37:761–765.

    Article  PubMed  CAS  Google Scholar 

  • Keen, J.N., and Ashcroft, AE, 1999, Sequence analysis of expressed proteins, in: Post-Translational Processing: A Practical Approach, S.J. Higgins and B.D. Hames, eds, Oxford University Press, New York, NY, pp. 334.

    Google Scholar 

  • Kim, M., Canio, W., Kessler, S., and Sinha, N., 2001, Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato, Science 293:287–289.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1978, How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell 15:1109–1123.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1986, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44:283–292.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1987a, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs, Nucleic Acids Res. 15:8125–8148.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1987b, At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells, J. Mol. Biol. 196:947–950.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1989a, Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems, Mol. Cell. Biol. 9:5073–5080.

    PubMed  CAS  Google Scholar 

  • Kozak, M., 1989b, The scanning model for translation: an update, J. Cell Biol. 108:229–241.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1990, Downstream secondary structure facilitates recognition of inititator codons by eukaryotic ribosomes, Proc. Natl. Acad. Sci. 87:8301–8305.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1991a, An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115:887–903.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1991b, Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266:19867–19870.

    PubMed  CAS  Google Scholar 

  • Kozak, M., 1997, Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6, EMBO J. 16:2482–2492.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1999, Initiation of translation in prokaryotes and eukaryotes, Gene 234:187–208.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 2003, Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation, Gene 318:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko, J.E., Rogozin, I.B., Koonin, E.V., and Chumakov, P.M., 2005, Transcription of mammalian messenger RNAs by a nuclear RNA polymerase of mitochondrial origin, Nature 436:735–739.

    Article  PubMed  CAS  Google Scholar 

  • Lagrange, T., Kapanidis, A.N., Tang, H., Reinberg, D., and Ebright, R.H., 1998, New core promoter element in RNA polymerase II-dependent transcription: sequencespecific DNA binding by transcription factor IIB, Genes Dev. 12:34–44.

    PubMed  CAS  Google Scholar 

  • Lander, E.S., et al., 2001, Initial sequencing and analysis of the human genome, Nature 409:860–892.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, B., 2004, Genes VIII, Pearson Education, Upper Saddle River, NJ, pp.1027.

    Google Scholar 

  • Liebler, D.C., 2002, Introduction to Proteomics, Humana Press, Totowa, NJ, pp.194.

    Google Scholar 

  • Loeffler, M., and Kroemer, G., 2000, The mitochondrion in cell death control: certainties and incognita. Exp. Cell Res. 256:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Maquat, L.E., 1997, RNA Export from the nucleus, In: mRNA Metabolism and Post-Transcriptional Gene Regulation, J.B. Harford and D.R. Morris, eds., Wiley-Liss, New York, NY, pp.107–126.

    Google Scholar 

  • Mazumder, B., Seshadri, V., and Fox, P.L., 2003, Translational control by the 3′-UTR: the ends specify the means, Trends Biochem. Sci. 28:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Melton, D.A. Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K., and Green, M.R. 1984, Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.

    Article  PubMed  CAS  Google Scholar 

  • Mize, G.J., Ruan, H.J., Low, J.J., and Morris, D.R., 1998, The inhibitory upstream open reading frame from mammalian S-adenosylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions, J. Biol. Chem. 273:32500–32505.

    Article  PubMed  CAS  Google Scholar 

  • Molina, C., and Grotewold, E., 2005, Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25.

    Article  PubMed  CAS  Google Scholar 

  • Morris, D.R., 1995, Growth control of translation in mammalian cells, Prog. Nucleic Acid Res. Mol. Biol. 51:339–363.

    PubMed  CAS  Google Scholar 

  • Nakayama, J., Rice, J.C., Strahl, B. D., Allis, C. D., and Grewal, S. I. S., 2001, Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly, Science 292:110–113.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, Y., Haag, J.R., Ream, T., Nunes, P.C., Pontes, O., and Pikaard, C.S., 2005, Plant nuclear RNA polymerase IV mediates siRNA and DNA methylationdependent heterochromatin formation, Cell 120:613–622.

    Article  PubMed  CAS  Google Scholar 

  • Pain, V., 1996, Initiation of protein synthesis in eukaryotic cells, Eur. J. Biochem 236:747–771.

    Article  PubMed  CAS  Google Scholar 

  • Piñol-Roma, S., and Dreyfus, G., 1993, hnRNP proteins: Localization and transport between the nucleus and the cytoplasm, Trends Cell Biol. 3:151–155.

    Article  PubMed  Google Scholar 

  • Pradhan, S., and Adams, R.L.P., 1995, Distinct CG and CNG DNA methyltransferases in Pisum sativum, Plant J. 7:471–481.

    Article  PubMed  CAS  Google Scholar 

  • Preobrazhensky, A.A., and Spirin, A.S., 1978, Informosomes and their protein components: the present state of knowledge, Prog. Nucleic Acid Res. Mol. Biol. 21:1–38.

    Article  PubMed  CAS  Google Scholar 

  • Quarless, S.A., and Heinrich, G., 1986, The use of complementary RNA and S1 nuclease for the detection of low abundance mRNA transcripts, BioTechniques 4:434–438.

    CAS  Google Scholar 

  • Richter, U., Kiessling, J., Hedtke, B., Decker, E., Reski, R., Borner, T., and Weihe, A., 2002, Two RpoT genes of Physcomitrella patens encode phage-like RNA polymerases with dual targeting to mitochondria and plastids, Gene 290:95–1005.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, J.L., Ito, T., and Meyerowitz, E.M., 1999, Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana, Mol. Cell. Biol. 19:8505–8512.

    PubMed  CAS  Google Scholar 

  • Ruiz-Echevarria, M.J., Czaplinski, K., and Peltz, S.W., 1996, Making sense of nonsense in yeast, Trends Biochem. Sci. 21:433–438.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Echevarria, M., and Peltz, S.W., 2000, The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frame, Cell 101:741–751.

    Article  PubMed  CAS  Google Scholar 

  • Schimke, R.T., 1981, Chromosomal and extrachromosomal localization of amplified DHFR genes in cultured mammalian cells, Cold Spring harbor Symp. Quant. Biol. 45:785–797.

    PubMed  CAS  Google Scholar 

  • Smale, S.T., and Baltimore, D., 1989, The “initiator” as a transcription control element, Cell 57:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Soeiro, R., Vaughan, M.H., Warner, J.R., and Darnell, Jr., J.E., 1968, The turnover of nuclear DNA-like RNA in HELA cells, J. Biol. Chem. 39:112–118.

    CAS  Google Scholar 

  • Southern, E.M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98:503–517.

    Article  PubMed  CAS  Google Scholar 

  • Tosi, M., Young, R.A., Hagenbuchle, O., and Schibler, U., 1981, Multiple polyadenylation sites in a mouse α-amylase gene, Nucleic Acids Research 9:2313–2324.

    Article  PubMed  CAS  Google Scholar 

  • Tarun, S.Z., and Sachs, A.B., 1996, Association of the yeast poly(A) tail binding protein with translation factor eIF-4G, EMBO J. 15:7168–7177.

    PubMed  CAS  Google Scholar 

  • Tuzon, C.T., Borgstrom, B., Weilguny, D., Egel, R., Cooper, J.P., and Nielsen, O., 2004, The fission yeast heterochromatin protein Rik1 is required for telomere clustering during meiosis, J. Cell Biol. 165:759–765.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C., et al., 2001, The sequence of the human genome, Science 291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, V.M., 1980, Purification and properties of S1 nuclease from Aspergillus. Methods Enzymol. 65:248–255.

    PubMed  CAS  Google Scholar 

  • Wang, L., and Wessler, S.R., 1998, Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene, Plant Cell 10:1733–1745.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., and Wessler, S.R., 2001, Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc, Plant Physiol. 125:1380–1387.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., and Sachs, M.S., 1997, Ribosome stalling is responsible for argininespecific translational attenuation in Neurospora crassa. Mol. Cell. Biol. 17:4904–4913.

    PubMed  CAS  Google Scholar 

  • Wax, S.D., Nakamura, H., and Anderson, P.J., 2005, The tumor necrosis factor-α AU-rich element inhibits the stable association of the 40S ribsosomal subunit with RNA transcripts, Biochem. Biophys. Res. Comm. 333:1100–1106.

    Article  PubMed  CAS  Google Scholar 

  • Weihe, A., Hedtke, B., and Börner, T., 1997, Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album, Nucleic Acids Res. 25:2319–2325.

    Article  PubMed  CAS  Google Scholar 

  • Wells, S.E., Hillner, P.E., Vale, R.D., and Sachs, A.B., 1998, Circularization of mRNA by eukaryotic initiation factors, Mol. Cell 2:135–140.

    Article  PubMed  CAS  Google Scholar 

  • Wiese, A., Elzinga, N., Wobbes, B., and Smeekens, S., 2005, Sucrose-induced translational repression of plant bZIP-type transcription factors, Biochem. Soc. Trans. 33:272–275.

    Article  PubMed  CAS  Google Scholar 

  • Young, D.A., Allen, R.L., Harvey, A.J., and Lonsdale, D.M., 1998, Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced, Mol. Gen. Genet. 260:30–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Farrell, R.E. (2007). The Regulation of Gene Expression in Plants and Animals. In: Bassett, C.L. (eds) Regulation of Gene Expression in Plants. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35640-2_1

Download citation

Publish with us

Policies and ethics